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Abstract

In this paper we investigate the positivity and boundedness of the solu-
tion of a stochastic seasonal epidemic model for the respiratory syncytial
virus (RSV ). The stochasticity in the model is due to fluctuating physical
and social environments and is introduced by perturbing the transmission
parameter of the seasonal disease. We show the existence and uniqueness
of the positive solution of the stochastic seasonal epidemic model which
is required in the modeling of populations since all populations must be
positive from a biological point of view. In addition, the positivity and
boundedness of solutions is important to other nonlinear models that arise
in sciences and engineering. Numerical simulations of the stochastic model
are performed using the Milstein numerical scheme and are included to
support our analytic results.
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Positivity and boundedness of solutions for a stochastic seasonal epidemiological model for

respiratory syncytial virus (RSV)
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Positividad y acotamiento de soluciones de un mo-
delo epidemiologico estacional estocástico para el
virus respiratorio sincitial

Resumen
En este trabajo se investiga la positividad y acotamineto de la solución de
un modelo epidemiologico estacional estocástico para el virus respiratorio
sincitial (RSV ). La estocasticidad en el modelo se debe a entornos físicos
y sociales fluctuantes y se introduce perturbando el parámetro de transmi-
sión de la enfermedad. Se demuestra la existencia y unicidad de la solución
positiva del modelo epidemiologico estacional estocástico, lo cual se requie-
re en el modelado de las poblaciones ya que todas las poblaciones deben
ser positivos desde el punto de vista biológico. Adicionalmente, la positi-
vidad y la acotación de las soluciones es importante para otros modelos
no lineales que se presentan en las ciencias y la ingeniería. Las simula-
ciones numéricas del modelo estocástico se realizan utilizando el esquema
numérico de Milstein y se incluyen para apoyar los resultados analíticos.

Palabras clave: Modelo epidemiologico estacional estocástico; virus res-

piratorio sincitial; modelización matemática; positividad; sistema dinámi-

co.

1 Introduction

Seasonal diseases in humans are inherent in the organic growth of
man from infancy to old age. Some examples of such diseases are
measles, diphtheria, chickenpox, cholera, rotavirus, respiratory syn-
cytial virus (RSV ), vector-borne diseases including malaria and even
sexually transmitted gonorrhoea [1]. In the modeling of the transmis-
sion of seasonal diseases, several nonlinear models of ordinary differ-
ential equations have been used [2],[3]. In these models, the variables
commonly represent subpopulations of susceptibles (S), infected (I),
recovered (R), latent (E), transmitted disease vectors, and so forth.
Generally, the most important term is the nonlinear term βSI which
comes from the law of mass action and where β is the transmission
parameter of the disease [2]. In these models, periodic continuous

|96 Ingeniería y Ciencia



autores

functions β(t) (called sometimes seasonally-forced functions) incor-
porate the seasonality of the spread of the disease in the environment
[4],[5],[6],[7]. As an example of a seasonally-forced function, many au-
thors use the expression β(t) = b0(1+ b1 cos(2π(t+ϕ))), where b0 > 0
is the baseline transmission parameter, 0 < b1 ≤ 1 measures the am-
plitude of the seasonal variation in transmission, and 0 ≤ ϕ ≤ 1 is
the normalized phase angle. Other examples of seasonal functions
can be found in [5],[8],[6], where the models have a time dependent
transmission rate. Recently, in [9],[10],[11],[12] deterministic epidemi-
ological models have been studied, where the contact rate depends on
more complex variables and flow parameters of one subpopulation to
another depend on time. However, these models do not take into ac-
count the inherent randomness associated with the time variation of
the data. Moreover, environmental fluctuations are some of the most
important effects in real world systems. A large portion of natural
phenomena does not follow a deterministic law exactly, but rather
oscillates randomly around some average value [13].

In the seasonal epidemic models there are two environmental fluc-
tuations that can be considered: the first is the natural and well rec-
ognized fluctuation of the seasonal transmission rate which is modeled
by the seasonally-forced function β(t) and the second is the smaller
random perturbations affecting the seasonal transmission rate which
are modeled by Gaussian white noise. These last fluctuations arise
from uncertainties and variations in environmental, demographic and
all other parameters involved in the model system [14],[15],[16].

Thus, in this paper we propose to examine the effects of the
stochastic process solution of the mathematical model presented in
[17]. The stochasticity or noise is introduced on the baseline trans-
mission parameter of the model given in [17], with the parameter
perturbation technique, which is a standard technique in stochastic
population modeling [14],[18],[19]. In addition it should be mentioned
that several stochastic models have been applied to several issues in-
cluding epidemics, for instance [20],[21],[13],[22],[23],[24]. Other types
of stochastic models, such Markov’s chain and graphs can be applied
for several diseases with different characteristics [25].
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Previous studies regarding positivity and boundedness of solutions
of stochastic differential equation models have been developed with-
out seasonal transmission parameters. In this paper we are interested
in the introduction of stochasticity in the seasonal parameter in or-
der to provide some additional degree of realism when compared with
their deterministic counterparts [21],[26]. The main reason to intro-
duce environmental stochasticity is that this can be a driving force
that may change the deterministic dynamics of models [5],[27]. In
addition, the positivity and boundedness of solutions are important
to other nonlinear models that arise in sciences and engineering where
uncertainty is included [28]. Thus a very important issue that arises
when stochasticity is introduced in the seasonal epidemic model is
positivity and boundedness of the solution.

For stochastic modeling different types of perturbations or ran-
domness can be included in the model [25],[28]. However, in the art
of modeling it is necessary to investigate which type of perturbation
is more suitable for the particular disease. This issue is not a straight-
forward task and needs to be tackled with different statistical tools.
However, each disease may have a different environmental stochas-
ticity depending on the region. Historically, stochasticity has been
introduced in many models of stock prices, economics, queueing the-
ory, engineering, and biology. Nevertheless we do not rely on only
this fact. For example, based on real hospitalization data of the res-
piratory syncytial virus (RSV ), we believe that the transmission of
this type of disease is affected by several physical and social variables
[29],[30]. In fact RSV is an illness for which the timing and sever-
ity of outbreaks in a community vary from year to year [6],[31],[29].
Here we assume that the transmission rate parameter of the RSV can
be assumed equal to an average value plus a small time fluctuating
term and this term follows a normal distribution with mean zero [32].
Many parameters have variations of this type. Possible explanations
of this fact are a noisy environment due to several factors, such as
temperature, humidity, pollution, transport, population and others.
Our approach is to perturb the transmission rate parameter of the
RSV by a Wiener process. Thus, from a theoretical point of view we
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can rely on the existing framework for ordinary differential equations
dealing with Gaussian white noise perturbations [33]. Additionally
it is important to mention that other parameters of the model such
as birth rate can be also perturbed stochastically but generally, in
epidemic models, the most sensitive parameter is the transmission
parameter of the disease [34],[32],[35]. However, future work may in-
clude the study of positivity and boundedness of solutions when all
parameters are perturbed jointly.

This paper is organized as follows. Section 2 introduces a stochas-
tic model for transmission of seasonal epidemic diseases in a popu-
lation, where some stochasticity is introduced on the baseline trans-
mission rate. In Section 3 we show the positivity of the solutions of
the proposed stochastic model. Section 4 is devoted to the analysis of
the existence and dynamical behavior of the solutions in the disease
free state. The the property of stochastically ultimate boundedness is
proved in Section 5. In Section 6, numerical simulations using some
parameter values from clinical data of hospitalized individuals due to
the respiratory syncytial virus RSV of the Spanish region of Valen-
cia are presented in order to support our previous analytical results.
Finally, in Section 7 discussion and conclusions are presented.

2 Derivation of the stochastic model

In [17] a generalized epidemic SIRS seasonal model dealing with pop-
ulation proportions of susceptibles S(t), infected I(t) and recovered
R(t) has been presented and the authors showed the existence of peri-
odic solutions, where the contact rate is a continuous periodic function
β(t). The system is a first order ordinary differential equation of the
form

Ṡ(t) = µ(t)− µ(t)S(t) − β(t)S(t)I(t) + γ(t)R(t), S(0) =S0 > 0

İ(t) = β(t)S(t)I(t) − ν(t)I(t) − µ(t)I(t), I(0) =I0 > 0 (1)

Ṙ(t) = ν(t)I(t) − γ(t)R(t)− µ(t)R(t), R(0) =R0 > 0,

where:

1. The population is divided into three classes:
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• Proportion of susceptibles S(t), who are all individuals that
have not the virus,

• Proportion of infected I(t), being all the infected individu-
als having the virus and able to transmit the illness,

• Proportion of recovered R(t), who are all the individuals
not having the virus and with a temporary immunity.

2. The instantaneous birth rate µ(t) > 0 for all t ≥ 0, and equal to
the instantaneous death rate, and we take it to be a continuous
function.

3. For all the classes it is assumed the birth rate µ(t) is the same,
because we assume that deaths associated with the disease are
small.

4. The contact transmission rate (called seasonally-forced function)
is a function β(t) between classes S(t) and I(t), and is a contin-
uous periodic function, which satisfies

0 < βl := min
t∈R

β(t) ≤ β(t) ≤ βu := max
t∈R

β(t).

It is very common to approximate β(t) = b0(1+b1 cos(2π(t+ϕ))),
where b0 > 0 is the baseline transmission parameter, 0 < b1 ≤ 1
measures the amplitude of the seasonal variation in transmission
and 0 ≤ ϕ ≤ 2π is the normalized phase angle [6].

5. The instantaneous per capita rate of leaving the infective class
I(t) is called ν(t) and the instantaneous per capita rate of recov-
ered class R(t) is called γ(t), which are non-negative, continuous
and bounded functions in [0,∞[.

It is assumed that γ(t) < ν(t), for all t ≥ 0, i. e., the per capita rate
of recovery is smaller than the per capita rate of leaving the infective
and also that µu, νu, γu, and µl, νl, γl are positive real numbers defined
by

µu = sup
t∈[0,+∞)

µ(t) , νu = sup
t∈[0,+∞)

ν(t) , γu = sup
t∈[0,+∞)

γ(t),
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µl = inf
t∈[0,+∞)

µ(t) , νl = inf
t∈[0,+∞)

ν(t) , γl = inf
t∈[0,+∞)

γ(t).

It should be mentioned that generally the recovery parameter ν(t)
and the loss of immunity parameter γ(t) are assumed constant but
here we include a more general case where these parameters can vary
with time. On the other hand, birth and death rate µ(t) are assumed
varying with time in other epidemic models where the size of the
population is varying with time [2].

Fluctuations in the environmental conditions are some of the most
important factors affecting real world systems. A large part of nat-
ural phenomena do not follow deterministic laws exactly, but rather
oscillate randomly around some average value [13]. Therefore, in this
paper we propose to examine the effects of the introduction of envi-
ronmental noise on the positivity and boundedness of the stochastic
process solution of the mathematical model proposed in [17]. The
stochasticity or noise is introduced by perturbing the baseline trans-
mission parameter b0 in the model. This is a common technique used
in stochastic population modeling [14],[18],[19],[36],[37] and it allows
us to get analytical results [38],[18],[19],[39],[36],[37].

Let us now consider the model (1) with the perturbation on the
baseline transmission parameter b0 given by white noise. The use of
Gaussian white noise is a good hypothesis in this model since it is as-
sumed that the baseline transmission parameter oscillates randomly
around some average value, due to some time varying disturbances.
It is important to remark that this is the usual way to consider fluctu-
ation in stochastic population dynamics [13]. In addition, the trans-
mission parameter seems to be the parameter with faster variability
since it depends on many variables such as temperature, humidity,
pollution, transport and population that can vary every single day.
On the other hand, the death and birth rates vary much more slowly
and the recovery rate varies much less since is an intrinsic value of
the disease.

In this way, if a stochastic perturbation is made on the baseline
transmission parameter b0 as in [20],[21],[23], an Itô type stochastic
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differential system of the following form is obtained:

dX(t) = f(t, X(t))dt+ g(t, X(t))dW (t),

X(t0) = X0, t ∈ [t0, tf ], (2)

where X(t) = (S(t), I(t), R(t))T and the solution {X(t), t ∈ [t0, tf ]}
is an Itô process, f is the continuous deterministic component or
drift coefficient, g is the continuous random component or diffusion
coefficient [33], defined by f : Rd × [0,+∞) −→ R

d and g : Rd ×
[0,+∞) −→ R

d×m. Thus, f is an d-vector valued function, g is an
d×m matrix-valued function, and W (t) is a m-dimensional stochastic
process having scalar Wiener process components. For our particular
case, m = 1 and d = 3. Here, the perturbation to the baseline
transmission parameter b0 is introduced in the following form

b̃0 = b0 + αη(t),

where α ∈ R is the intensity of the noise and η(t) is defined as the
formal derivative of a standard Wiener process (a formal derivative
because W (t) has probability one of being nondifferentiable). Since
the Gaussian white noise has mean zero and the intensity of noise is
small in comparison to the baseline transmission parameter b0, one
gets positive values for b̃0. Since negative values make no sense, the
very few negative values that may be produced during the simulation
will be discarded. The new transmission rate is given by: β̃(t) =

β(t) + αβ(t)
b0

η(t). Thus introducing the perturbation on equation (1)
and multiplying by dt, one gets the following stochastic differential
system given by

dS(t) =
(

µ(t)− µ(t)S(t) − β(t)S(t)I(t) + γ(t)R(t)
)

dt−
αβ(t)S(t)I(t)

b0
dW (t),

dI(t) =
(

β(t)S(t)I(t) − ν(t)I(t)− µ(t)I(t)
)

dt+
αβ(t)S(t)I(t)

b0
dW (t),

dR(t)

dt
= ν(t)I(t) − (µ(t) + γ(t))R(t), (3)

with initial data
(

S(0), I(0), R(0)
)T

∈ R
3
+.
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3 Global positive solution

Since (3) represents a population system, it is important that we do
not obtain negative values. Thus, we must first prove the positivity
of the solutions. Unless otherwise specified, let (Ω,F ,P) be a com-
plete probability space with a filtration {Ft}t≥0 satisfying the usual
conditions (i.e. it is increasing and right continuous while F0 contains
all P-null sets). Let W (t) be the one-dimensional Brownian motion
defined on this probability space. Let X(t) = (x1(t), x2(t), x3(t))

T

and

R
3
++ =

{

X(t) ∈ R
3 : 0 < x1(t), x2(t), x3(t), t ≥ 0

}

.

The following theorem guarantees the existence and uniqueness of the
solution of system (3).

Theorem 3.1. Assume that µu, νu, γu, b0, are positive real numbers.

Let X(0) =
(

S(0), I(0), R(0)
)T

∈ Ω be any initial condition. Then,

there is a unique solution X(t) =
(

S(t), I(t), R(t)
)T

of the system (3)
for t ≥ 0 and the solution will remain in R

3
++ with probability 1.

Proof. Let Z(t) = S(t) + I(t) + R(t). We can see from (3) that

if X(0) =
(

S(0), I(0), R(0)
)T

∈ Ω, and t ∈ [0, T ] almost surely (a.s),
then

Z(t) =
(

Z(0)− 1
)

e−
∫
t

0
µ(s)ds + 1 ≤

(

Z(0)− 1
)

e−µut + 1,

for t ∈ [0, T ] a.s. Therefore, we obtain that Z(t) < 1, i.e.,

S(t), I(t), R(t) ∈ (0, 1) for t ∈ [0, T ] a.s. (4)

It is clear that the coefficients of the system (3) are locally Lipschitz
continuous. Thus, for any given initial value X(0) ∈ Ω there is a
unique maximal local solution X(t) on t ∈ [0, τe] , where τe is the
explosion time, see [40]. In order to prove that the solution is global,
it is necessary to show that τe = ∞ a.s. Take k0 an integer, sufficiently
large so that if X(0) ∈ Ω, then every component of X(0) lies within
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the interval [1/k0, 1). For each integer k ≥ k0, we define the stopping
times

τk = inf
{

t ∈ [0, τe) : S(t) ≤
1

k
, or I(t) ≤

1

k
, or R(t) ≤

1

k

}

,

τ∞ = lim
k−→∞

τk = inf
{

t ∈ [0, τe) : S(t) ≤ 0, or I(t) ≤ 0, or R(t) ≤ 0
}

,

with the agreement that inf ∅ = ∞ (where ∅ denotes the empty set).
Clearly the sequence {τk} is increasing when k −→ ∞. Is clear that
τ∞ ≤ τe a.s. Thus, if we prove that τ∞ = ∞ a.s, then τe = ∞ a.s,
and X(t) ∈ Ω a.s, for all t ≥ 0. We prove now that τe = ∞ a.s.

Define the function V : (0, 1)× (0, 1)× (0, 1) −→ R+ given by

V (x1, x2, x3) = − ln(x1)− ln(x2)− ln(x3).

Using Itô’s formula, for T > 0, t ∈ [0, T∧τk] to X(t) = (S(t), I(t), R(t)),
we obtain that

dV (X(t)) = −
1

S(t)
dS(t)−

1

I(t)
dI(t)−

1

R(t)
dR(t) +

1

S2(t)

(

d〈S〉(t)
)2

+
1

I2(t)

(

d〈I〉(t)
)2

,

and using (3) we obtain

dV (X(t)) =

(

−
µ(t)

S(t)
+ 3µ(t) + ν(t) + γ(t)−

γ(t)R(t)2 + ν(t)S(t)I(t)

S(t)R(t)

+ β(t)I(t)− β(t)S(t)
)

dt+

(

α2β(t)2

b20

(

S(t)2 + I(t)2
)

)

dt

+
αβ(t)

b0

(

I(t)− S(t)
)

dW (t).

Thus, we get the following expression

dV (X(t)) <

(

3µu + νu + γu + βuI(t) +
α2(βu)2

b20

(

S2(t) + I2(t)
)

)

dt
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+
αβ(t)

b0

(

I(t)− S(t)
)

dW (t).

Now, since S(t), I(t), R(t) ∈ (0, 1), for all t ∈ [0, T ∧ τk] a.s., and with

c1 = 3µu + νu + γu + βu + 2α2(βu)2

b2
0

, one gets that

dV (X(t)) < c1dt+
αβ(t)

b0

(

I(t)− S(t)
)

dW (t). (5)

Therefore, integrating both sides of (5) from 0 to T ∧ tk, and after
taking the expectation on both sides, one obtains that

EV (X(τk ∧ T )) ≤ V (X(0)) + c1E

τk∧T
∫

0

dt ≤ V (X(0)) + c1E(τk ∧ T )

(6)

≤ V (X(0)) + c1T.

Since V (X(τk ∧ T )) > 0, then

EV (X(τk ∧ T )) = E[V (X(τk ∧ T ))χ(τk≤T )] + E[V (X(τk ∧ T ))χ(τk>T )]
(7)

≥ E[V (X(τk))χ(τk≤T )],

where χB is the characteristic function of B. Now, for τk, there is
some component of X(τk), say S(τk), such that 0 < S(τk) ≤

1
k
< 1.

Therefore, V (X(τk)) ≥ − ln
(

1
k

)

. Thus,

E[V (X(τk ∧ T ))] ≥ E[V (X(τk))χ(τk≤T )] ≥ − ln

(

1

k

)

P(τk ≤ T ). (8)

From (6)-(8), it follows that

P(τk ≤ T ) ≤
V (X(0)) + c1T

ln(k)
.

Letting k −→ ∞, for all T > 0, we obtain P(τ∞ ≤ T ) = 0. Hence,
P(τ∞ = ∞) = 1. Thus, as τe ≥ τ∞, then τe = τ∞ = ∞ a.s. The proof
is completed. �
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Corollary 3.1. The set Ω is almost positively invariant by the system
(3), that is, for X(0) = (S(0), I(0), R(0)) ∈ Ω, it holds that P[X(t) =
(S(t), I(t), R(t)) ∈ Ω] = 1, for all t ≥ 0.�

4 Local behavior

In this section we analyze the existence and dynamic behavior of the
solutions in the disease free state.

4.1 Existence of the equilibrium disease states

The following theorem shows the existence of a disease-free equilib-
rium point.

Theorem 4.1. If βu < νl, then the system (3) is globally asymptot-
ically stable, in the sense that for any initial value X0 ∈ Ω, the so-
lution X(t) will tend to the equilibrium point (1, 0, 0) asymptotically
with probability 1.

Proof: We consider the second equation of system (3). Thus,
for I(t), if I(0) > 0, we can use the function V2(t) = ln(I(t)), with
I(t) ∈ (0, 1). Applying Itô’s formula, one obtains that

dV2(t) =
dI(t)

I(t)
−

1

2

1

I2(t)

(

d〈I〉(t)
)2

=
(

β(t)S(t)− ν(t)− µ(t)

−
1

2

α2β2(t)S2(t)

b20

)

dt+
αβ(t)S(t)

b0
dW (t).

Then
∫ t

0

dV2(t) =

∫ t

0

(

β(s)S(s)− ν(s)− µ(s)−
1

2

α2β2(s)S2(s)

b20

)

ds

+

∫ t

0

αβ(s)S(s)

b0
dW (s) <

∫ t

0

(

β(s)S(s)− ν(s)− µ(s)
)

ds

|106 Ingeniería y Ciencia



autores

+

∫ t

0

αβ(s)S(s)

b0
dW (s).

Simplifying and dividing the above inequality by t > 0, it follows that

1

t
V2(t) <

1

t
V2(0) +

1

t

∫ t

0

(

β(s)S(s)− ν(s)− µ(s)
)

ds

+
1

t

∫ t

0

αβ(s)S(s)

b0
dW (s),

i.e.,

1

t
ln(I(t)) <

1

t
ln(I(0)) +

1

t

∫ t

0

(

βu − νl − µl
)

ds+
1

t

∫ t

0

αβ(s)S(s)

b0
dW (s).

(9)

Using the fact that lim
t−→∞

W (t)
t

= 0 a.s. [23], one gets lim
t−→∞

1
t
ln I(t) <

θ < 0 a.s, where θ = βu − νl − µl. Then one obtains that

I(t) ≤ eθt, for all t ≥ 0, a.s. (10)

Since, I(t) > 0, for all t ≥ 0 a.s., we get lim
t−→∞

I(t) = 0, a.s.

Now, from the third equation of system (3) it follows that

dR(t)

dt
< I(t)νu − µlR(t),

thus

R(t) ≤ e−µltνu

∫ t

0

I(s)eµ
lsds+R(0)e−µlt,

and from (10) we have that

R(t) ≤ e−µltνu

∫ t

0

e(β
u−νl)sds+R(0)e−µlt, a.s. (11)

Therefore, if follows that lim
t−→∞

R(t) = 0, a.s. Finally, using Theorem

(3.1) we can obtain that lim
t−→∞

S(t) ≤ 1, a.s. Thus, the proof of the

theorem is completed. �
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4.2 Behavior around of disease free

The following theorem, shows that the solution of system (3), is oscil-
latory around of point (1, 0, 0), if βu < νl. Furthermore, the intensity
of this oscillations depends of α.

Theorem 4.2. Under the hypothesis of Theorem 4.1, and if X0 ∈ Ω,
then the solution X(t) of model (3), has the property

lim sup
t−→∞

1

t
E

∫ t

0

[(

S(s)− 1

)2

+ I2(s) +R2(s)

]

ds ≤
2γu

K
+

2α2(βu)2

Kb20
,

a.s.,

where, 0 < K < min

{

2µl, 2(νl + µl), 2(µl+γl)(2µu+νu)(νl+µl−βu)
βuγu

}

,

Proof. By making the change variable P (t) = S(t) − 1, in the
system (3), this can be written as

dP (t) =

(

−µ(t)P (t)− β(t)I(t)− β(t)I(t)P (t) + γ(t)R(t)

)

dt (12)

−
αβ(t)I(t)(P (t) + 1)

b0
dW (t),

dI(t) =

(

β(t)I(t)P (t)−

(

ν(t) + µ(t)− β(t)

)

I(t)

)

dt (13)

+
αβ(t)I(t)(P (t) + 1)

b0
dW (t),

dR(t) =

(

ν(t)I(t)−
(

µ(t) + γ(t)
)

R(t)

)

dt. (14)

Define a function, such that V3(P, I, R) = (P + I)2 + c1I + c2R, with
where P ∈ R−, I, R ∈ Ω, and c1, c2 are positive constants to be
determined later. Is clear that V3 > 0, then

dV3(t) =

[

−2P (t)2µ(t)− 2I(t)P (t)

(

2µ(t) + ν(t)−
c1β(t)

2

)
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− 2I2(t)(ν(t) + µ(t)) + 2γ(t)R(t)P (t) + 2γ(t)R(t)I(t)

− c2(µ(t) + γ(t))R(t)− c1(ν(t) + µ(t)− β(t))I(t) + c2ν(t)I(t)

+
2α2β(t)2I(t)2(P (t) + 1)2

b20

]

dt+
c1αβ(t)I(t)(1 + P (t))

b0
dW (t).

Thus, from Corollary 3.1, 0 < S(t), I(t), R(t) < 1 a.s, then P (t) < 0
a.s. Furthermore, from the hypothesis it follows that

dV3(t) ≤

[

−2P (t)2µl − 2I(t)P (t)

(

2µu + νu −
c1β

u

2

)

− 2I2(t)(νl + µl) + 2γu − c2(µ
l + γl)R2(t)

+

[

−c1(ν
l + µl − βu) + c2ν

u

]

I(t) +
2α2(βu)2

b20

]

dt

+
c1αβ(t)I(t)(1 + P (t))

b0
dW (t), a.s.

Choosing c1, c2, such that 2µu + νu − c1βu

2
= 0, and −c1(ν

l + µl −
βu) + c2ν

u = 0, it follows that

dV3(t) ≤

[

−2P (t)2µl − 2I2(t)(νl + µl) + 2γu − c2(µ
l + γl)R2(t)

(15)

+
2α2(βu)2

b20

]

dt+
c1αβ(t)I(t)(1 + P (t))

b0
dW (t), a.s.

Now, integrating both sides of (15) from 0 to t, and taking expecta-
tion, one gets that

E

∫ t

0

[

2P (s)2µl + 2I2(s)(νl + µl) + c2(µ
l + γl)R2(s)

]

ds

≤ E[V3(P (0), I(0), R(0))] + 2γut + t
2α2(βu)2

b20
, a.s.
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Putting 0 < K < min

{

2µl, 2(νl + µl), c2(µ
l + γl)

}

, we obtain that

lim sup
t−→∞

1

t
E

∫ t

0

[(

S(s)− 1

)2

+ I2(s) +R2(s)

]

ds ≤
2γu

K
+

2α2(βu)2

Kb20
,

a.s. �

5 Global behavior

Theorem 3.1 and Corollary 3.1, show that the solution of the system
(3) with a positive initial value in Ω, will remain positive in Ω. The
properties of positivity and nonexplosion are essential for a popula-
tion system. Once they have been established, is very important to
discuss some other properties of the solution of system (3). From a
biological point of view, due to the limitation of resources, the prop-
erty of stochastically ultimate boundedness is more desirable than the
nonexplosion property.

First, we show that the solution of system (3) is asymptotically
bounded. Thus, we show first an important result, and then the
stochastically ultimate boundedness follows directly.

Theorem 5.1. If θ ∈ [1,∞), and there is a positive constant H0 that
is independent of the initial value X(0) = (S(0), I(0), R(0)) ∈ Ω, then
the solution X(t) = (S(t), I(t), R(t)) of (3) has the property

lim sup
t−→∞

E|X(t)|θ ≤ H0. (16)

Proof. From Corollary 3.1, the solutions will remain in Ω, for all
t ≥ 0 with probability 1, a.s. We set V4(X(t)) = Sθ(t)+ Iθ(t)+Rθ(t),
with θ ≥ 1. Using the Itô’s formula one gets the following,

d(etV4(t)) ≤ H1e
tdt+

etθβ(t)
(

Iθ(t)S(t)− Sθ(t)I(t)
)

b0
dW (t), (17)
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where H1 = max

{

θµu + θγu + θ(θ−1)α2(βu)2

2b2
0

, θβu + θ(θ−1)α2(βu)2

2b2
0

, θνu

}

.

Let k0 > 0 be sufficiently large, such that for every component of
X(0) lying within in the interval [1/k0, 1). For each integer k ≥ k0,
define the stopping time by

τk = inf

{

t ≥ 0, S(t) ≤
1

k
, or I(t) ≤

1

k
, or R(t) ≤

1

k

}

.

Clearly τk −→ ∞, almost surely as k −→ ∞. It follows from (17)
that

E[et∧τkV4(X(t ∧ τk)] ≤ V4(X(0)) +H1E

t∧τk
∫

0

esds.

Letting k −→ ∞, one gets that

etE[V4(X(t)] ≤ V4(X(0)) +H1(e
t − 1).

Therefore,

E[V4(X(t)] < e−tV4(X(0)) +H1.

Since, |X(t)|2 ≤ 3max

{

S2(t), I2(t), R2(t)

}

, then

|X(t)|θ ≤ 3
θ

2 max

{

Sθ(t), Iθ(t), Rθ(t)

}

≤ 3
θ

2V4(X(t)).

Thus,

E[|(X(t)|θ] ≤ 3
θ

2 (e−tV4(X(0)) +H1).

Therefore, we can obtain

lim sup
t−→∞

E[|(X(t)|θ] ≤ H0,

where H0 = 3
θ

2H1. Thus, the theorem has been proved.
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Definition 5.2. System (3) is said to be stochastically ultimately
bounded if for any ε ∈ (0, 1) there exists a positive constant H = H(ε),
such that for any initial value (S(0), I(0), R(0)) ∈ Ω, the solution
X(t) = (S(t), I(t), R(t)) of (3) has the property

lim sup
t−→∞

P

{

|X(t)| ≤ H(ε)

}

≥ 1− ε. (18)

Theorem 5.3. Under Assumption (5.1), the system (3) is stochasti-
cally ultimately bounded.

Proof. By Theorem 5.1, for θ = 3/2, there is ∆ such that

lim sup
t−→∞

E[|(X(t)|3/2] ≤ ∆.

Let ε > 0 be given, we can choose H(ε) = (∆
ǫ
)
2

3 . Therefore, by the

application of the Chebyshev’s inequality one gets that P

{

|X(t)| >

H

}

≤ H(ε)−
3

2E[|(X(t)|
3

2 ]. This implies the proof of theorem.

6 Numerical simulations

In this section, numerical simulations using some parameters values
from clinical data of hospitalized individuals due to the respiratory
syncytial virus RSV of the Spanish region of Valencia are presented
in order to support our previous theoretical results. In addition, we il-
lustrate the effects of introducing stochasticity by means of numerical
simulations. At first the deterministic model of RSV is simulated and
later the stochastic model. The introduction of stochasticity into the
deterministic model helps to understand the differences between the
deterministic model and the real data of RSV . Thus, the stochastic
model can be seen as a more sophisticated model.

The virus RSV is the cause of acute respiratory infections in chil-
dren younger than 2 years old, mainly bronchiolitis and pneumonia.
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RSV is spread from respiratory secretions through close contact with
infected persons or contact with contaminated surfaces or objects.
This virus has been known since 1957, but only recently has the adult
pathology been established. It is also the cause of 18% of the hos-
pitalizations due to pneumonia in adults older than 65 [41]. RSV
is a seasonal epidemic with minor variations each year and coincides
in time with other infections as influenza or rotavirus, producing a
high number of hospitalizations and, consequently, a saturation of
Public Health Systems [42],[43],[44],[45]. RSV also causes repeated
infections throughout life, usually associated with moderate-to-severe
cold-like symptoms; however, severe lower respiratory tract disease
can occur at any age, especially among the elderly or among those
with compromised cardiac, pulmonary, or immune systems.

For the deterministic case model the parameter values have been
taken from real clinical data of RSV hospitalizations of children
younger than 4 years old during the period January 2001 to Decem-
ber 2004 from the CMBD (Basic Minimum Data Set) database of
the Spanish region of Valencia [32],[44],[46]. This data was collected
weekly taking into account other diseases such as bronchiolitis and
pneumonia. In addition some unknown parameters were estimated
using the least-squares fitting procedure and using the hospitaliza-
tion data. The mean square error obtained is less than 0.002. The
graphical representation of the model fitting can be seen in Figure 1.

As can be seen graphically, the deterministic epidemic model (1)
agrees well with the observed epidemic data, but it is important to
notice that the hospitalization data is not exactly periodic as the de-
terministic model predicts [17]. Thus, stochastic perturbations on
parameters are a good explanation of these differences between the
mathematical model and data, since without their use the simulation
of the model will be exactly periodic. More details that include prac-
tical issues of the RSV mathematical modeling such as confidence
intervals, parameter estimation, and numerical methods can be seen
in [32],[42].
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Figure 1: The deterministic model (1) fitted to real hospitalization data regard-
ing RSV .
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Figure 2: Numerical simulation of 6 trajectories of the stochastic model (3)
computed using the Milstein scheme with perturbations on b0 in a range of 1%.
The parameter values are b0 = 37, b1 = 0.31, ϕ = 0.9, γ = 1.8, ν = 36, µ = 0.009.
The mean trajectory (dotted) is also included.

|114 Ingeniería y Ciencia



autores

In the numerical simulation of the stochastic model it can be ob-
served in Figure 2 that 6 different pathwise patterns occur with the
mean trajectory included. Perturbations on b0 in a range of 1% are
used and Milstein numerical scheme [33] are applied to obtain the
solutions of the stochastic system (3). All these trajectory solutions
satisfy positivity and boundedness as the theoretical results predict.
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Figure 3: Numerical simulation of 10 trajectories of the RSV stochastic model
(3) computed using the Milstein scheme with perturbations on b0 in a range of
3%. The parameter values are b0 = 37, b1 = 0.31, ϕ = 0.9, γ = 1.8, ν = 36,
µ = 0.009.

In order to give more support to our theoretical results, an extreme
case with perturbations on b0 in a range of 3% are used. As can be
seen in Figure 3, the 10 pathwise trajectories with the mean trajectory
are bounded and positive despite the use of large perturbations. It is
important to remark that other perturbations in larger ranges have
been taken and the positivity and boundedness are maintained.
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Figure 4: Numerical simulation of 10 trajectories of the infectious from the RSV

stochastic model (3) computed using the Milstein scheme with perturbations on
b0 in a range of 1%. The parameter values are b0 = 24, b1 = 0.31, ϕ = 0.9,
γ = 1.8, ν = 36, µ = 0.009.
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Figure 5: Numerical simulation of 10 trajectories of the susceptible individuals
from the RSV stochastic model (3) computed using the Milstein scheme with
perturbations on b0 in a range of 1%. The parameter values are b0 = 24, b1 = 0.31,
ϕ = 0.9, γ = 1.8, ν = 36, µ = 0.009.
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In Figure 4 and 5 we present 10 pathwise trajectories that show
that the behavior of the infection tends to zero as t increases if the
parameters satisfy βu < νl. In addition, as it was expected in Figure 5
the susceptible proportion approximates to one as t increases. Thus,
by computer simulation, we support our theoretical results for the
conditions under the RSV die-out. Thus, health institutions can take
measures to make the corresponding parameters change in order to
obtain a feasible way for RSV prevention and control.

7 Conclusions

In this paper, we have considered a stochastic seasonal epidemic model
in a population, where some stochasticity is introduced on the baseline
transmission rate. Here, we investigated the existence and unique-
ness of the solutions of the stochastic model and proved positivity
and boundedness, which is of paramount importance for the study of
the dynamics of population models. In addition, the positivity and
boundedness of solutions is important to other nonlinear models that
arise in sciences and engineering. Thus, a similar approach can be
applied to other models from different areas.

Stochastic differential equations give another option to model vi-
ral dynamics and stochastic effects and introduce a more realistic way
of modeling this type of disease. A numerical simulation of the sea-
sonal stochastic models describing the transmission of the respiratory
syncytial virus RSV in the region of Valencia using the Milstein nu-
merical scheme is included in order to support our theoretical results.
By computer simulation, we show how RSV die out when the a condi-
tion is satisfied. Thus, health institutions can take measures to make
the corresponding parameter changes in order to obtain a feasible way
for RSV prevention and control.
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