Study of the flameless combustión mode in presence of the thermal load fluctuation

Main Article Content

Juan D Echavarría Andrés Amell Arrieta


The present study evaluated numerically and experimentally in a 20 kW furnace (using natural gas as fuel and with an equivalent ratio of 1.2) the stability of the flameless combustion regime due to the fluctuation of the thermal load through the use of different air flow (43 scfm, 63 scfm y 83 scfm) and an Air-Helium mixture (Air 82.02 scfm and Helium 7.06 scfm); the last one it was used to evaluate the behavior of the system in the face of an increase in the load fluid specific heat capacity. The study was divided in two parts, numerical simulation and experimental phase. From the numerical simulation was calculated the temperature profile, CO profile, the recycle ratio Kv and the mass of flue gases recirculated. In the experimental phase the temperature profiles obtained showed a decrease in the temperature of the combustion chamber as the load air flow increased however, this decrease did not affect the thermal uniformity inside of the furnace. Furthermore the useful efficiency showed an increase when went over from a load air of 43 scfm to 63 scfm, followed by a decrease of it with the other load flows.


Download data is not yet available.

Article Details

How to Cite
ECHAVARRÍA, Juan D; AMELL ARRIETA, Andrés. Study of the flameless combustión mode in presence of the thermal load fluctuation. Ingeniería y Ciencia, [S.l.], v. 13, n. 25, p. 185-208, apr. 2017. ISSN 2256-4314. Available at: <>. Date accessed: 23 nov. 2017. doi:
Flameless combustion; recirculation factor; temperature profile; thermal uniformity factor; NO emissions.


[1] J. Wünning, “What is Flameless Combustion?”IFRF Online Combus-tion Handbook, 2002. [Online]. Available:

[2] A. Milani and J. Wünning, “How do I achieve flameless combustion inpractice?”IFRF Online Combustion Handbook, 2003. [Online]. Available:

[3] A. Colorado and M. Sánchez, “Construcción y Evaluación de un Prototipopara la Obtención del Fenómeno de Combustión sin Llama Usando ViciadoExterno,” Ph.D. dissertation, Universidad de Antioquia, 2007.

[4] A. Amell, F. Cadavid, and B. Herrera, “Modelos para el estudio fenome-nológico de la combustión sin llama con simulación numérica,”UniversidadNacional de Colombia, pp. 70–76, 2009.

[5] B. Herrera and A. A. Amell, “Desarrollo y evaluación de una cámara decombustión sin llama,” Ph.D. dissertation, Universidad de Antioquia, 2009.

[6] C. Sepúlveda and A. A. Amell, “Desarrollo y evaluación de un quemadorauto regenerativo para la combustión sin llama del gas natural,” Ph.D. dis-sertation, Universidad de Antioquia, 2009.

[7] J. A. Wünning and J. G. Wünning, “Flameless oxidation to reducethermal no-formation,”Progress in Energy and Combustion Science, vol. 23,no. 1, pp. 81 – 94, 1997. [Online]. Available:

[8] A. Veríssimo, A. Rocha, and M. Costa, “Importance of the inlet airvelocity on the establishment of flameless combustion in a laboratorycombustor,”Experimental Thermal and Fluid Science, vol. 44, pp. 75–81,jan 2013. [Online]. Available:

[9] a. F. Colorado, B. a. Herrera, and a. a. Amell, “Performance of aflameless combustion furnace using biogas and natural gas.”Bioresourcetechnology, vol. 101, no. 7, pp. 2443–9, apr 2010. [Online]. Available:

[10] G. Szegö, B. Dally, and G. Nathan, “Operational characteristics ofa parallel jet MILD combustion burner system,”Combustion andFlame, vol. 156, no. 2, pp. 429–438, feb 2009. [Online]. Available:

[11] Y. Tu, H. Liu, S. Chen, Z. Liu, H. Zhao, and C. Zheng, “Effects of furnacechamber shape on the MILD combustion of natural gas,”Applied ThermalEngineering, vol. 76, pp. 64–75, feb 2015.

[12] R. Weber, J. P. Smart, and W. V. Kamp, “On the (MILD) combustion of ga-seous, liquid, and solid fuels in high temperature preheated air,”Proceedingsof the Combustion Institute, vol. 30, no. 2, pp. 2623–2629, jan 2005.

[13] Y. Weihong and W. Blasiak, “Combustion performance and numerical si-mulation of a high-temperature air-LPG flame on a regenerative burner,”Scandinavian Journal of Metallurgy, vol. 33, no. 2, pp. 113–120, apr 2004.

[14] N. E. Rafidi, “Thermodynamic aspects and heat transfer characteristics ofHiTAC furnaces with regenerators,” Ph.D. dissertation, 2005.