Influence of Si Atoms Insertion on the Formation of the Ti-Si-N Composite by DFT Simulation

Main Article Content

Juan Manuel Gonzalez
Johans Steeven Restrepo https://orcid.org/0000-0001-6788-040X
Carolina Ortega Portilla
Alexander Ruden Muñoz https://orcid.org/0000-0002-1221-5303
Federico Sequeda Osorio

Keywords

density functional theory, crystalline structure, nano-composite, silicon, thin films, coatings

Abstract

Using Density Functional Theory (DFT) SiN and TiN structures were simulated, in order to study the influence of the silicon atoms insertion in the TiN lattice placed on interstitial and substitutional positions in a face centered cubic (FCC) crystalline lattice. Results showed that the SiN - FCC structure is pseudo-stable; meanwhile the tetragonal structure is stable with ceramic behavior. The TiN - FCC structure is stable with ceramic behavior similar to SiN - Tetragonal. 21% silicon atoms insertion in interstitial positions showed high induced deformation, high polarization and Si - N bond formation, indication an amorphous transition that could lead to the production of a material composed from TiN grains or nano-grains embedded in a Si - N amorphous matrix. When  including 21% of silicon atoms, substituting titanium atoms, the distribution showed higher stability that could lead to the formation of different phases of the stoichiometric Ti1 -x SixNy compound.

Downloads

Download data is not yet available.
Abstract 1529 | PDF Downloads 721 HTML Downloads 338

References

[1] A. Muñoz, J. López, A. Ruden, D. Devia, V. Benavides, J. González, and A. Devia, “Descripción de Celdas FCC para Películas Delgadas de TiAlN por
Métodos Computacionales,” Revista Colombiana de Física, vol. 39, no. 1, pp. 139–142, 2007. 12, 17

[2] J. M. González, A. Ruden, A. Neira, F. Sequeda, and P. Leroux, “Influence of Substrate Temperature on Structure and Tribological Properties of TiAlNV,”Society of Vacuum Coaters, vol. 51, pp. 666–672, 2008. 12, 15

[3] D. M. Devia, J. Restrepo, A. Ruden, J. M. González, F. Sequeda, and P. J.Arango, “The Tribological Characteristics of TiN, TiC, TiC/TiN Films Prepared by Reactive Pulsed Arc Evaporation Technique,” Society of Vacuum Coaters, vol. 505, pp. 32–36, 2009. 12

[4] A. Murcia, A. Ruden, A. Neira, J. M. Gonzalez, I. Castro, S. Brulh, and F. Sequeda, “Tribological Properties of Duplex Coating Applied in Chrome Based Steel,” Society Vacuum Coaters, vol. 505, pp. 37–43, 2009. 12

[5] M. F. Cano, J. S. Restrepo, A. Ruden, J. M. González, and F. Sequeda,“The Effect of Substrate Temperatures on Tribological Behavior of Ti-Al-N Coating Deposited by Magnetron Sputtering,” Rev. Society of Vacuum Coaters, vol. 52, pp. 37–43, 2009. 12

[6] C.-L. Chang, W.-C. Chen, P.-C. Tsai, W.-Y. Ho, and D.-Y. Wang, “Characteristics and performance of TiSiN/TiAlN multilayers coating synthesized by cathodic arc plasma evaporation,” Surface and Coatings Technology, vol.202, no. 4, pp. 987–992, 2007. 12

[7] D. Devia, R. Ospina, V. Benavides, E. Restrepo, and A. Devia, “Study of TiN/BN bilayers produced by pulsed arc plasma,” Vacuum, vol. 78, no. 1,pp. 67–71, 2005. 12

[8] S.-M. Yang, Y.-Y. Chang, D.-Y. Lin, D.-Y. Wang, and W. Wu, “Mechanical and tribological properties of multilayered TiSiN/CrN coatings synthesized by a cathodic arc deposition process,” Surface and Coatings Technology, vol.202, no. 10, pp. 2176–2181, 2008. 12, 13

[9] L. Rebouta, C. J. Tavares, R. Aimo, Z. Wang, K. Pischow, E. Alves, T. C.Rojas, and J. A. Odriozola, “Hard nanocomposite Ti–Si–N coatings prepared by DC reactive magnetron sputtering,” Surface and Coatings Technology, vol.133, pp. 234–239, 2000. 13

[10] Y. H. Cheng, T. Browne, B. Heckerman, and E. I. Meletis, “Mechanicaland tribological properties of nanocomposite TiSiN coatings,” Surface and Coatings Technology, vol. 204, no. 14, pp. 2123–2129, 2010. 13

[11] R. F. Zhang and S. Veprek, “Metastable phases and spinodal decompositionin Ti 1- x Al x N system studied by ab initio and thermodynamic modeling,a comparison with the TiN–Si 3 N 4 System,” Materials Science and Engineering: A, vol. 448, no. 1, pp. 111–119, 2007. 13, 16, 17, 19

[12] M. Paulasto, F. J. J. Van Loo, and J. K. Kivilahti, “Stability and formation kinetics of TiN and silicides in the Ti/Si3N4 diffusion couple,” Le Journal de Physique IV, vol. 3, no. C7, pp. C7—-1069, 1993. 13

[13] E. V. Shalaeva, S. V. Borisov, O. F. Denisov, and M. V. Kuznetsov,“Metastable phase diagram of Ti–Si–N (O) films (C Si< 30 at.%),” Thin Solid Films, vol. 339, no. 1, pp. 129–136, 1999. 13, 15, 16, 17, 18, 19, 20

[14] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J. P. Riviere, A. Cavaleiro,and E. Alves, “Characterisation of Ti 1- x Si x N y nanocomposite films,” Surface and Coatings Technology, vol. 133, pp. 307–313, 2000. 13

[15] J. Houska, J. E. Klemberg-Sapieha, and L. Martinu, “Atomistic simulations of the characteristics of TiSiN nanocomposites of various compositions,” Surface and Coatings Technology, vol. 203, no. 22, pp. 3348–3355, 2009. 13, 19

[16] F. Kauffmann, G. Dehm, V. Schier, A. Schattke, T. Beck, S. Lang, and E. Arzt, “Microstructural size effects on the hardness of nanocrystalline TiN/amorphous-SiN x coatings prepared by magnetron sputtering,” Thin Solid Films, vol. 473, no. 1, pp. 114–122, 2005. 13, 14, 18, 19

[17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,G.Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,O.Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B.Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski,S.Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,M. W. Wong, C. Gonzalez, and J. A. Pople, “Gaussian. inc., wallingford, ct,2005 - gaussian 03, revicion d. i,” Gaussian, Inc., Wallingford, CT, 2004. 14,18

[18] A. Frisch, M. Frisch, and G. Trucks, “Gaussian 03 User’s reference,” pp.23–28, 2005. 14

[19] A. Devia, V. Benavides, E. Restrepo, D. F. Arias, and R. Ospina, “Influence substrate temperature on structural properties of TiN/TiC bilayers produced by pulsed arc techniques,” Vacuum, vol. 81, no. 3, pp. 378–384, 2006. 15

[20] D. Jaeger and J. Patscheider, “A complete and self-consistent evaluation of XPS spectra of TiN,” Journal of Electron Spectroscopy and Related Phenomena,vol. 185, no. 11, pp. 523–534, 2012. 16

[21] F. L. Riley, “Silicon nitride and related materials,” Journal of the American Ceramic Society, vol. 83, no. 2, pp. 245–265, 2000. 16

[22] S. Wild, P. Grieveson, and K. H. Jack, “The crystal structure of alpha and beta silicon and germanium nitrides,” Special Ceramics, vol. 5, pp. 385–395,1972. 16

[23] A. Markwitz, H. Baumann, E. F. Krimmel, M. Rose, K. Bethge, P. Misaelides,and S. Logothetidis, “Nitrogen profiles of thin sputtered PVD silicon nitride films,” Vacuum, vol. 44, no. 3, pp. 367–370, 1993. 16

[24] A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fueß,P. Kroll, and R. Boehler, “Synthesis of cubic silicon nitride,” Nature, vol.400, no. 6742, pp. 340–342, 1999. 16, 17

[25] A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural population analysis,”The Journal of Chemical Physics, vol. 83, no. 2, pp. 735–746, 1985.17

Most read articles by the same author(s)