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Abstract
The Reproducing Kernel Element Method (RKEM) is a relatively new tech-
nique developed to have two distinguished features: arbitrary high order
smoothness and arbitrary interpolation order of the shape functions. This
paper provides a tutorial on the derivation and computational implementa-
tion of RKEM for Galerkin discretizations of linear elastostatic problems for
one and two dimensional space. A key characteristic of RKEM is that it do
not require mid-side nodes in the elements to increase the interpolatory power
of its shape functions, and contrary to meshless methods, the same mesh used
to construct the shape functions is used for integration of the stiffness ma-
trix. Furthermore, some issues about the quadrature used for integration are
discussed in this paper. Its hopes that this may attracts the attention of
mathematicians.
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Reproducing Kernel Element Method for Galerking Solution of Elastostatic Problems

Método del elemento reproductor del núcleo para
soluciones de problemas elasto-estáticos.
Resumen
El Método del Elemento Reproductor del Núcleo (RKEM) es una técnica re-
lativamente nueva desarrollada para tener dos propiedades distinguidas: sua-
vidad de orden arbitrario y funciones de interpolación de orden arbitrario.
Este artículo provee un tutorial acerca de la deducción e implementación de
RKEM en discretizaciones de Galerkin en problemas elasto-estáticos en una
y dos dimensiones. Una característica clave de RKEM es que no requiere de
nodos intermedios en los lados de los elementos para incrementar el poder de
interpolación de sus funciones de forma, y contrario a los métodos sin malla,
la misma malla usada para construir las funciones de forma es usada para la
integración de la matriz de rigidez. Además, algunas cuestiones acerca de la
cuadratura usada para integración son discutidas en el artículo. Se espera que
esto pueda atraer la atención de matemáticos.

Palabras claves: Elasticidad, convergencia, RKEM, continuidad, método de
Galerkin

1 Introduction

One of the most widely used computational methods in engineering today is
the Finite Element Method (FEM). While FEM has a wide range of uses, it
does have some limitations, as any approximation method does. One of the
limitations is the ability to provide arbitrary smooth global interpolation in
higher dimension [1]. One of the key characteristic of RKEM is that can be
used in geometry representation as have been shown in [2]. This open a won-
derful opportunity to introduce the method in bio-sciences. But first, we need
to show that the method can be use to solve differential equations, as well
as, geometry representation. The finite element method may not be used to
solve problem that require higher order of continuity, because in one way or
another, is always difficult to construct higher order interpolation functions [3]
to calculate stresses and strains. Thus, such quantities are not very well re-
presented within an element, and various strategies are used to smooth these
results. For these reason, it would be advantageous to have a method to ge-
nerate higher-order smooth interpolation. The aim of this paper is to provide
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the details of the implementation of the RKEM, including its programming in
1D. The details of the method are first explicitly outlined for one-dimensional
problems and next for a two-dimensional problem. The essential concepts
will be described in the context of a one-dimensional and two-dimensional
problems in elastostatic. Also, we want to show the mathematics involved in
the derivation of the discrete system of equations using an RKEM interpola-
tion in the Galerkin weakform. Its hopes that this attract the attention of
mathematicians, physicist and engineers working on continuum mechanics.

2 Theoretical Background

2.1 Interpolation Using RKEM Shape Functions

An important application area for RKEM is the interpolation of a set of points.
Curve fitting and interpolations are extremely related each other. According
to Piegl [4], we can distinguish two types of fitting, interpolations and appro-
ximation. Methods like finite element and finite differences uses the concept of
interpolation, on the other hand, most of the popular meshfree methods uses
the concept of approximation. This difference has an enormous impact in the
application of the methods. In this section we introduce the interpolation
capability of the reproducing kernel element method.

2.1.1 Concept of Shape Function in RKEM A shape function is the
name given to a collection of functions used to interpolate or approximate a
data set. The successful of an interpolation/approximation depends of the
shape functions chosen. In general we want a method capable of representing
a function at some point just using the information in its vicinity. A number of
ways to construct shape functions have been proposed and we can find many
papers about them. The RKEM shape function is closely related to the finite
integral representation, that according to Liu [5] is categorized as:

• Finite integral representation methods.

f(x) =

∫ x2

x1

f (ξ)κ (x− ξ) dξ

where κ (x− ξ) is known as the kernel, x , ξ, x1 and x2 are points over
the real line.
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Furthermore the RKEM shape function enjoys some distinguished features [6]:

1. The smoothness of the global basis functions solely determined by that
of the kernel function.

2. The global basis functions of RKEM have the Kronecker delta property
at the associated nodes, provided that some conditions on the support
size of the kernel function are met.

To construct the RKEM shape functions we combine the so-called global par-
tition polynomials [6] with compactly supported functions defined through
kernel functions of special forms. A kernel function κ(z;x) has the property
that it is non-zero only when ‖z‖2 < ρ, where z = x0 − x and x0 is the point
where the kernel is centered. The positive number ρ represents the support
size of the kernel function with respect to its first argument. According to [1],
the kernel function have the general form presented in Eq. (1).

κ(z;x) :=
1

ρd
w

(
z

ρ

)
b(x) (1)

where d is the spatial dimension, x is the point at which the kernel is evaluated,
w is compactly-supported smooth window function, and b(x) is a normaliza-
tion factor [7, 6]. The requirements on the window function are

supp(w) ⊂ B1

w(x) > 0 for ‖x‖2 < 1

w ∈ C l
(
<d
)

for some l ≥ 1

(2)

where, B1 =
{
x ∈ <d | ‖x‖2 ≤ 1

}
is the unit ball. Now, using the finite in-

tegral representation method together with the global partition polynomials
and Eq. (1) and (2) the RKEM interpolant (If) is given by [6],

If(x) =
∑
e∈ΛE

[∫
Ωe

κ(x− y;x) dy

(∑
i∈Λe

ψe,i(x)f (xe,i)

)]
(3)

From a practical point of view we can cast Eq (3) into

Ifh(x) =
∑
I∈Λp

ΨI(x)fI (4)
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where fI correspond to nodal weights, Λp is the set of all the nodes in the
domain and ΨI(x) the RKEM shape function associated to node I and is
given by

ΨI(x) :=
∑̀
k=1

 ∑
j∈Λek

1

ρdek,j
w

(
x− xek,j
ρek,j

)
4Vek,j

 b(x)ψek,ik(x) (5)

where ` is the number of elements sharing the node I, Λek is the set of all the
nodes of element ek and b(x) is known as the normalizer and is equal to

b (x) :=

 A
e∈ΛE

 n∑
j=1

1

ρde,j
w

(
x− xe,j
ρe,j

)
∆Ve,j


−1

(6)

where Ae∈ΛE is the assembling operator [3]. Note that we have used nodal
integration to discretize the integral in Eq. (3). In [1] is presented a metho-
dology to construct the global partition polynomial for a triangular RKEM
element and in [8] is presented a way to enrich the global partition polynomial
with extra derivatives, both approximation have been used in this paper. Lu
et al. [8] have presented a method of getting a better interpolation capability
using the primary variable and its first derivative, as is shown in Eq. (7).

Ifh(x) =
∑
I

(
ΨI(x)fI + Ψ′I(x)f ′I

)
(7)

For the curve fitting case we can view the f(x) like the interpolation, fI like
the actual point and we will need to calculate the f ′I . To understand how to
come with the Eq. (4) we will present a brief example in one dimension and
using linear elements.

Example. Consider the mesh show in Fig. 1, we assume that the domain
is Ω = (0, 1). We want to interpolate a function using linear RKEM elements.

Figure 1: Spatial discretization with two elements and three nodes.

First we should expand Eq (3) in the following way:
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u (x) =

[∫
Ω0

1

ρ
φ

(
y − x
ρ

)
dy

]
[ψ0,0 (x) û0 + ψ0,1 (x) û1] b0 (x) +[∫

Ω1

1

ρ
φ

(
y − x
ρ

)
dy

]
[ψ1,0 (x) û1 + ψ1,1 (x) û2] b0 (x)

where ûi correspond to the value of the function to interpolate and evaluated
at the node i. We can manipulate terms so that we can get the following
representation of the same equation.

u (x) =
2∑

I=0

ΨI ûI

where,

Ψ0 (x) =

[∫
Ω0

1

ρ
φ

(
y − x
ρ

)
dy

]
[ψ0,0 (x) b0 (x)]

Ψ1 (x) =

[∫
Ω0

1

ρ
φ

(
y − x
ρ

)
dy

]
[ψ0,1 (x) b0 (x)]

+

[∫
Ω1

1

ρ
φ

(
y − x
ρ

)
dy

]
[ψ1,0 (x) b0 (x)]

Ψ2 (x) =

[∫
Ω1

1

ρ
φ

(
y − x
ρ

)
dy

]
[ψ1,1 (x) b0 (x)]

In Fig 2 we can see a pictorial definition of Ψ2(x). Note that in this case the
function Ψ2(x) has a negative value. The normalizer b0(x) could be calculated
in the following way:

b0(x) =

[∫
Ω0

1

ρ
φ

(
y − x
ρ

)
dy +

∫
Ω1

1

ρ
φ

(
y − x
ρ

)
dy

]−1

Note that b0(x) is no more that the area below the window function evaluated
at point x.
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X

Figure 2: Window function and ψ1,1 evaluated at point x.

2.1.2 Window function In the definition of the RKEM shape functions
we introduced the concept of window function. Now we will expand further
this concept. A window function is simply a continuous function that has a
value of zero outside its support. An example of window function is the conical
window function shown below

w (x) =

{(
1− x2

)n −1 ≤ x ≤ +1

0 |x| > 1
(8)

where n represent the degree of continuity. We say that the window function
is of class Cn. In Fig. 3 is shown a plot of the window function and its first
derivative.
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(a) Window function.
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(b) Window function first derivatives.

Figure 3: Window function and its derivative for w(x) = (1− x2)n.

2.2 RKEM in One Dimension

This section present a very detailed procedure of the RKEM applied to the
elastostatic differential equation in 1D. We will implement the L2P1I0 ele-
ment [1] that was described briefly in the previous example. The characteristic
of this element is that only reproduce linear polynomials.
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2.2.1 Discrete Equations in 1D Consider the following one-dimensional
problem on the domain 0 ≤ x ≤ 1:

Eu,xx + b = 0 in Ω = (0, 1) (9)

where u (x) is the displacement, E is the Young’s modulus, and b is the body
force per unit volume. The following specific boundary conditions are chosen:

Eu,x = t̄ (x = Γt) (10)
u = ū (x = Γu) (11)

In a more mathematical terminology Eq. (10) is a Neumman boundary condi-
tion [3] and Eq. (11) is a Dirichlet boundary condition. To obtain the discrete
equations it is first necessary to use a weak form of the equilibrium equation
and boundary conditions. The following weak form is used:∫ 1

0
u,xEu,x dx−

∫ 1

0
u b dx− ut̄

∣∣∣
Γt

= 0 (12)

then the equilibrium Eq. (9) and boundary conditions (10) and (11) are satis-
fied. Note that due the RKEM interpolation has the Kronecker delta property
we do not need to use a constraint Galerkin weak form, that is, we can im-
pose condition (11) directly like in finite element analysis. In order to obtain
the discrete equations from the weak form, the approximate solution u(x) is
constructed according to what was presented in previous sections. For the
displacement uh, we have:

uh (x) =

n∑
I

ΨIuI (13)

where n is the number of nodes used in the support domain of the point at x
for constructing the RKEM shape function ΨI (x) and uI are nodal weights.
By using Eq (13) and taking derivatives respect to x we obtain,

uh,x (x) =
n∑
I

ΨI,x uI (14)

Now, replacing Eq (13), (14) in (12) yields to the following discrete system of
equations:

Ku = f (15)
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where

KIJ =

∫ 1

0
ΨI,xEΨJ,x dx (16)

f =

∫ 1

0
ΨIb dx+ ΨI t̄

∣∣∣
Γt

(17)

To get a solution of (15) we need to impose the Dirichlet boundary conditions
to the system in order to avoid rigid body motion. There is a variety of ways
to do this. The two most popular methods are the penalty approach and static
condensation [9]. In this work we used the second approach. Due that the
RKEM interpolation has the Kronecker delta property, we can set the boun-
dary conditions directly. These equations are assembled by integrating over
the domain of the problem using Gauss quadrature. To evaluate the integrals
in (16) and (17), it is necessary to define integration cells over the domain of
the problem, in RKEM we have two options, we can use directly the RKEM
mesh or to use an integration background mesh. As we explained in previous
sections, the RKEM shape functions are piecewise rational shape functions,
therefore, we need to use many Gauss point to evaluate the integrals such
that we can obtain a well conditioned, non singular system of equations (15).
To solve this system of equation we used a factorization process that lead to
the Gauss elimination method. Once the cells and corresponding quadrature
points are defined, the discrete equations are assembled by looping over each
quadrature point, xQ. In the assembly of the discrete equation (16), at each
quadrature point the nodes whose domain of influence contain the point xQ
are first determined. These are referred to as support nodes for the quadrature
point. The shape function (5) and its shape function derivatives corresponding
to each of these support nodes are calculated and assembled. A similar pro-
cedure is used at the Neumman boundary conditions to evaluate the applied
traction contribution to the force vector (17).

2.3 RKEM in Two Dimension

This section present a very detailed procedure of the RKEM applied to the
elastostatic differential equation in 2D. We will implement the T9P2I1 element
[1], whose main characteristic is that uses three corner nodes to interpolate
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a second order polynomial and its first derivative. The essential concepts
outlined in previous sections do not change for the RKEM method in two or
three dimensions. The scalar variable x simply becomes a vector xT = [x y]
in all the equations stated previously. There are, however, some differences and
extensions which are not so trivial and consequently need further explanation.
These include the use of radial window functions, the procedure to evaluate
the coverage, calculating of the derivatives of shape functions and normalizer,
assembly of discrete system of equations.

2.3.1 Radial Window Function In two dimensions a node’s domain of
influence covers an area in the domain. The choice of the shape of this domain
is arbitrary. However, circular domain or square domains have been used
most frequently. In this work we have used the circular domains for all the
computation. In RKEM the radius of the circle can not be arbitrary, it need
to be a function of the mesh [10]. The scheme for the circular domain is shown
in Fig. 4.

Figure 4: Domain of influence in two dimension using circular domains. The triangle
corresponds to the domain of the problem and the vertexes are the nodes.

The window function definition in 2D used in this work will be:

w (x− xI) = w (rI) (18)

where w (rI) is given by Eq. (8) with x replaced by rI ; and rI are given by

rI =
‖x− xI‖

ρI
(19)
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The requirement is that the argument in the normalizer be non-zero every-
where in the domain, and thus invertible, which is necessary to compute the
shape function.

2.4 Quadrature

The computation of the stiffness and load vectors requires integration of the
shape functions and products of derivatives of shape functions. The RKEM
functions are piecewise rational functions that are able to reproduce polyno-
mials. As can be seen in the plots of the shape function in Fig. 5 the functions
are globally continuous and smooth. In Fig. 6 we can see typical entries to
integrate in the weak form. Note that due to the strong oscillation this kind
of functions are difficult to integrate exactly. Even though the RKEM shape
functions are not polynomials, Gauss quadrature is used anyway. We used
the work presented in [11] to generate Gauss points for a triangular domain.
Currently, 64 quadrature points per element are used to integrate the T9P2I1
element. Still, the problem of finding an optimal quadrature rule to integrate
exactly the weak form is an open research area.

0 1 2

6 7 8

543

(a) Typical 2D mesh (b) RKEM shape function corresponding to node 4.

Figure 5: RKEM mesh and and global shape function for node 4.
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(a) ∂ψ00
0

∂x

∂ψ00
4

∂x
(b) ∂ψ01

0
∂x

∂ψ01
4

∂x

Figure 6: Typical elements to integrate in the stiffness matrix. We have used the
T9P2I1 element.

2.5 Discrete Equations in 2D

The discrete equations in two dimensions are very similar to those of the one-
dimensional formulation. Line integrals in x become surface integrals in x and
y and there are some other subtle differences.

2.5.1 Formulation The partial differential equation and boundary condi-
tion for a 2D solid mechanics problem can be written in the form:

LTσ + b = 0 in Ω (20)
u = ū in Γu (21)
σn = t̄ in Γt (22)

where σ is the stress tensor for 2D solid and L is the differential operator over
σ. The other terms were explained in the previous section. The Galerkin weak
form for the problem stated by Eq. (20), (21) and (22) can be given by∫

Ω
δ (Lu)T D (Lu) dΩ−

∫
Ω
δuT b dΩ−

∫
Γt

δuT t̄ dΓ = 0 (23)
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For the displacement vector we have

uh =

{
u
v

}h

=
n∑
I

[
ψ00
I ψ10

I ψ01
I 0 0 0

0 0 0 ψ00
I ψ10

I ψ01
I

]


uI
u′I
u′′I
vI
v′I
v′′I


=

n∑
I

ΨIuI (24)

where ΨI is the matrix of shape functions. By using Eq. (24), the product of
Luh (which gives the strains) becomes

Luh = L

n∑
I

ΨIuI =

n∑
I

 ∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

[ψ00
I ψ10

I ψ01
I 0 0 0

0 0 0 ψ00
I ψ10

I ψ01
I

]
uI

=

n∑
I

ψ00
I,x ψ10

I,x ψ01
I,x 0 0 0

0 0 0 ψ00
I,y ψ10

I,y ψ01
I,y

ψ00
I,y ψ10

I,y ψ01
I,y ψ00

I,x ψ10
I,x ψ01

I,x

uI =
n∑
I

BIuI (25)

where BI is the strain matrix for node I. Substituting Eq. (24) and (25) into
(23), we have

Ku = f

where

KIJ =

∫
Ω
BT

I DBJ dΩ (26)

fI =

∫
Ω

ΨT
I b dΩ +

∫
Γt

ΨT
I t̄ dΓ (27)

D =

λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

 for plane strain (28)

λ and µ are the Lame parameters [3]
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3 Results and Disscusions

3.1 One-Dimensional Numerical Example

Consider the implementation of the RKEM method in one dimension for a
problem in linear elastostatic. Figure 7 shows the example problem, a 1D bar
of unit length subjected to a linear body force of magnitude x.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

L

b(x) = x

x

Figure 7: The one-dimensional example problem. A bar of unit length subjected
to a linear body force and fixed at the point x = 0.

The displacement of the bar is fixed at the left end, and the right end is
traction free. The bar has a constant cross sectional area of unit value, and
modulus of elasticity E. The equilibrium equation and boundary conditions
for this problem are given by:

(S) =


Eu,xx + x = 0 0 < x < 1

u(0) = 0

u(1) = 1
3

(29)

The exact solution to the above problem is given by:

u(x) =
1

E

[
1

2
x− x3

6

]
(30)

We shall use this solution to examine the quality of the RKEM solution.
Figure 8 is a comparison of the RKEM solution to the exact solution for the
displacement along the bar. These results were obtained using two to nine
nodes along the length of the bar and 16 integration points per element.
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(d) 8 element in the domain

Figure 8: Comparison of RKEM and exact results for displacement for one-
dimensional problem

The displacement field calculated with RKEM is nearly exact and conti-
nuous. Note that we can generate a globally continuous function with just two
nodes. It should be noted that these results were plotted using 200 sampling
points along the bar. In Fig. 9 we can observed the solution in the derivative.
Note that, unlike finite element, our solution in derivative is continuous. Re-
member that for the case of linear finite element the stresses are approximated
by a constant values along the element, thus we have jumps between elements.
The L2P1I0 element used in this example is not that important for practical
application, but was chosen because it easy to show how the RKEM method
works. In Section 2.3 we use a higher order element in 2D.
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(b) 2 element in the domain
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(c) 4 element in the domain
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Figure 9: Comparison of RKEM and exact results for stress for one-dimensional
problem

3.2 RKEM Program Description

1. Set up nodal coordinates and mesh.

2. Calculate radius of support and check quasi-uniformity condition [10].

3. Set bounding boxes for integration (background mesh).

4. Set up integration points, weights, and Jacobian for each cell.

5. Loop over integration points.
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(a) Calculate normalizer and its derivative at point xG.
(b) Calculate shape functions and its derivatives at point xG
(c) Assemble contributions to K matrix (16) and force vector (17)

6. Apply boundary condition. Static condensed out the matrix K.

7. Solve for nodal parameters uI

The latter provides a flow chart which outlines the essential steps of the pro-
gram. In the first step of the program, the nodal coordinates and the mesh are
set up. The nodes are spaced uniformly along the length of the bar, which is
not necessary but simplifies the program. Then in the second step the radius
of support is set up such that is equal to 0.95 times the minimum distance
between elements connecting a node. With the information gotten in the pre-
vious step we must check the quasi-uniformity condition. We tested different
quadratures and 16 Gauss points per cell is the best option. Note that in this
program we loop over all the Gauss points, but this is not necessary because
as we know the RKEM shape functions has a compact support and just the
nodes inside its influence need to be accounted for. But we loop for all the
nodes to clarify the program. In one dimension this is not a serious issue but
in multidimensional problem it could be cumbersome. After we assembled the
matrix and vector and applied the boundary condition we solve the system
of equation using LU decomposition. Because we have the Kronecker delta
property, the nodal values calculated are the real nodal values.

3.3 Two-Dimensional Numerical Examples

In this section, two classical problems in linear elastostatic will be described
and solve using a RKEM program written in C++ and compiled using pgCC.
These examples serves to illustrate the accuracy of the RKEM method in
calculating the displacement and stress fields in two dimensions.

3.3.1 Timoshenko Beam Problem Consider the equations of the two di-
mensional linear isotropic elasticity theory on the domain illustrated in Fig. 10.
The boundary conditions are given in [12], where P is a given constant and
I = 2c3/3.
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c

c

Dirichlet Boundary Conditions

x2

x1

L

P

Figure 10: Domain for plane stress elasticity problem.

The problem was solved for the plane stress case with E = 1, ν = 0.3,
c = 0.125, L = 1, and P = −1. The regular RKEM meshes used to solve the
Galerkin weakform (23) are shown in Fig. 11. In the series of Fig. 12 - 13 we
can see the good interpolation capability of the RKEM. Note also that we are
not using any post process to deal with the stress plot.

(a) 4 by 1 elements in the domain (b) 8 by 2 elements in the domain

Figure 11: Series of meshes used to solve the Timoshenko beam problem.
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(a) Displacements in x2-direction for the 4 by 1 element in the
domain.

(b) Stresses in the x1-direction for the 4 by 1 element in the
domain

Figure 12: Solution for the 4 by 1 series.
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(a) Displacements in x2-direction for the 8 by 2 element in the
domain.

(b) Stresses in the x1-direction for the 8 by 2 element in the
domain

Figure 13: Solution for the 8 by 2 series.
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3.3.2 Elasticity Problem The resolution of the problem of the 2D linear
elasticity problem represented in Fig. 14 is considered in this section. The
same problem was used in [13] to test the imposition of boundary conditions
in mesh free methods. The resolution with the RKEM method is considered
next in order to analyze the behavior of the imposition of essential boundary
conditions. We used two different meshes (14×14 and 28×28 nodes) and a finer
mesh is used for the representation of the solution. These meshes are shown in
Fig 15(a) and Fig 15(b). Figure 16 and Fig. 17 shows the solution obtained. As
observed in the last section, the prescribed displacements are directly imposed,
i.e. the value of the corresponding nodal coefficients is set to the prescribed
value. In both cases, the RKEM approximation at the boundary allows the
exact enforcement of the prescribed displacement. Note that we have wiggles
close to the boundary, that is because the RKEM does not enforce strongly
the boundary conditions. That is, they are exactly at the nodes but between
them, the solution is a piecewise global continuous polynomial. This effect
is minimized when you refine the model, see Fig. 15(b). Also note that, we
have not used any post process to smooth the results. After we calculated the
nodal unknowns we use the interpolation property of RKEM to calculate the
displacement using a finer distribution of points. For the integration of the
weak form (Eq. (23)) we have used 64 Gauss points per elements. We used
the RKEM mesh like the integration mesh. We need to use a high order rule
because of the difficulty of the integration of the shape functions.

1

1

0
0

ux = 0

uy = 0.2

uy = 0

ν = 0.3

X

Y

Figure 14: Problem statement.
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(a) Mesh with 14 × 14 nodes and 392 T9P2I1
elements.

(b) Mesh with 28× 28 nodes and 1568 T9P2I1
elements.

Figure 15: RKEM meshes used to solve the elasticity problem.
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Figure 16: Solution using the mesh showed in Fig 15(a). Contour plot of the vertical
displacement.

Figure 17: Solution using the mesh showed in Fig 15(b). Contour plot of the
vertical displacement.
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4 Conclusion

The details of RKEM and its numerical implementation have been presented,
with specific emphasis on a one and two dimensional formulation. The RKEM
interpolant and its use in a Galerkin weak form were described, including
examples in elastostatic. The numerical results show the accuracy of the
method for the displacement field. Furthermore, it show a better approxima-
tion property than a linear FEM element. We showed that the L2P1I0 element
is globally continuous. The extension of the method to two dimension was des-
cribed, and two simple 2D problems in linear elastostatics were presented and
solved with the method and using the T9P2I1 element. The results showed
the accuracy of the RKEM method in computing the stresses in the problem
as well as the displacements. We have shown that we do not need any special
treatment of the boundary conditions, then the computational implementa-
tion of the Dirichlet boundary conditions is straightforward. Still there are
some issues about the computational time, specially for 2D or 3D problems,
the integration of the weak form and the programming of the method. Howe-
ver, the potential of the RKEM for certain classes of problems is exciting and
demands more research. The aim of this work has been to provide the reader
with an introduction to the RKEM method, and to facilitate experimentation
with the method independently.
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