
Ingeniería y Ciencia
ISSN:1794-9165
ISSN-e: 2256-4314
ing. cienc., vol. 9, no. 17, pp. 111–145, enero-junio. 2013.
http://www.eafit.edu.co/ingciencia
This a open-access article distributed under the terms of the Creative Commons Attribution License.

A Fully-Discrete Finite Element
Approximation for the Eddy Currents

Problem
Ramiro Acevedo1 and Gerardo Loaiza2

Received:18-04-2012, Acepted:10-12-2012
Available online: 22-03-2013

MSC:78M10, 65N30

Abstract
The eddy current model is obtained from Maxwell’s equations by neglec-
ting the displacement currents in the Ampère-Maxwell’s law. The so-called
“A, V − A potential formulation” is nowadays one of the most accepted for-
mulations to solve the eddy current equations numerically, and Bíró & Valli
have recently provided its well-posedness and convergence analysis for the
time-harmonic eddy current problem. The aim of this paper is to extend the
analysis performed by Bíró & Valli to the general transient eddy current model.
We provide a backward-Euler fully-discrete approximation based on nodal fi-
nite elements and we show that the resulting discrete variational problem is
well posed. Furthermore, error estimates that prove optimal convergence are
settled.
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A fully-discrete finite element approximation for the eddy currents problem

Highlights
• We have proposed a fully-discrete finite element approximation for the eddy
current problem. • The eddy current problem is considered in a bounded
domain, without topological restrictions on the conductor. • We have shown
that at each step the fully-discrete scheme propose is well posed. • We have
obtained quasi-optimal error estimates of the typical physical variables of in-
terest of the eddy current problem.

Un esquema completamente discreto basado en ele-
mentos finitos para el problema de corrientes induci-
das

Resumen
El modelo de Eddy Current se obtiene a partir de las ecuaciones de Maxwell,
despreciando las corrientes de desplazamiento de la Ley de Ampère-Maxwell.
Bíró & Valli realizaron recientemente el análisis de existencia y unicidad de
solución y el análisis teórico de convergencia para una de las formulaciones
más populares del problema de Eddy Current en regimen armónico, conocida
como “formulación en potenciales A, V − A”. En el presente artículo se ex-
tiende el análisis realizado por Bíró & Valli al modelo evolutivo general de
Eddy Current. Presentamos un esquema completamente discreto para la for-
mulación, basado en una aproximación temporal usando un método de Euler
implícito y una aproximación espacial a través del método de elementos fini-
tos. Además, demostramos que el problema discreto resultante es un problema
bien planteado y obtenemos estimaciones del error que muestran convergencia
óptima.

Palabras clave: Modelo evolutivo de Eddy Current, formulación en términos
de potenciales, esquema completamente discreto, elementos finitos, estimacio-
nes de error.

1 Introduction

In applications related to electrical power engineering (see for instance
[1]) the displacement currents existing in a metallic conductor are ne-
gligible compared to the conduction current. In such situations the dis-
placement currents can be dropped from Maxwell equations to obtain a
magneto-quasistatic submodel usually called eddy current problem; see
for instance [2, Chapter 8]. From the mathematical point of view, this
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submodel provides a reasonable approximation to the solution of the full
Maxwell system in the low frequency range [3].

Among the numerical methods used to approximate eddy current
equations, the finite element method (FEM) and methods combining
FEM and boundary element method (FEM-BEM) are the most ex-
tended, see, for instance, the recent book by Alonso & Valli [4] for a
survey on this subject including a large list of references. In the applied
mathematical literature, we can find several recent papers devoted to
the numerical analysis of the 3D time dependent eddy current model, in
bounded domains as well as in unbounded domains by using FEM and
FEM-BEM methods: Meddahi & Selgas [5], Ma [6], Acevedo et al. [7],
Kang & Kim [8], Prato et al. [9], Acevedo & Meddahi [10], Bermudez et
al. [11], Camaño & Rodríguez [12]. The main differences among these
works are the selected unknowns to compute the electromagnetic field,
the topological assumptions on the conductor domain and the boundary
conditions when the problem is solved in a bounded domain.

The aim of this paper is to analyze a finite element fully-discrete
approximation for the time-dependent eddy current problem in a bounded
domain, based in a formulation in terms of a vector magnetic potential
and an electric scalar potential. Numerical experiments showing the
efficiency of this approach, were reported by Bíró & Preis (1989) [13],
and nowadays, it is the basis of several commercial codes to compute
the solution of the eddy current model. Bíró & Valli (2007) [14] have
studied that potential formulation for the time-harmonic eddy current
model and have proved its well-posedness and theoretical convergence
in a general geometric situation. However, a similar analysis for the
transient case has not been realized yet. Although, Kang & Kim (2009)
in [8] have recently provided quasi-optimal error estimates, showing the
theoretical convergence of the method in the case of a simply-connected
conductor and by assuming homogeneous conditions for the electromag-
netic fields on the boundary of the conductor, these assumptions are
very restrictive for many real applications (e.g., metallurgical electrodes
[15] and power transformers [16]). Moreover, the decay conditions on
the fields at infinity (see [3]) allow to assume that the electromagnetic
field is weak far away from the conductor and not on its boundary, as it
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was assumed by Kang & Kim when the artificial homogeneous boundary
conditions are supposed.

In order to improve the results obtained by Kang & King for more
realistic applications, we consider a multiply-connected conductor and
we opt for a typical approach: to restrict the eddy current equations to a
sufficiently large computational domain containing the region of interest
and impose a convenient artificial homogeneous boundary conditions for
the electromagnetic fields on its border. We provide a backward-Euler
fully-discrete approximation based on nodal finite elements to appro-
ximate the solution of the resultant model. This fully-discrete scheme
solves in each time an elliptic problem and we use the techniques used
in [14] and [17] to prove the ellipticity of its bilinear form. Furthermore,
by using this ellipticity we define projection operators to the discrete
finite element subspaces and obtain quasi-optimal error estimates, which
allows us to approximate the typical physical variables of interest of
the eddy current problem: the eddy currents in the conductor and the
magnetic induction in the computational domain.

The outline of the paper is as follows: In section 2, we summarize
some results concerning tangential traces in H(curl; Ω) and recall some
basic results for the study of time-dependent problems. In Section 3, we
introduce the eddy current model in a bounded domain and deduce a
potential-based formulation (the so-called “A, V − A potential formu-
lation”) for the time-dependent eddy current problem. In Section 4, we
obtain a variational formulation for the problem and its fully-discrete
approximation scheme is analyzed in Section 5. Finally, the results pre-
sented in Section 6 prove that the resulting fully discrete scheme is con-
vergent in an optimal way. We end this paper by summarizing its main
results in Section 7.

2 Preliminaries

We use boldface letters to denote vectors as well as vector–valued func-
tions and the symbol |·| represents the standard Euclidean norm for
vectors. In this section Ω is a bounded open set in R3 with a Lipschitz
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boundary. We denote by Γ its boundary and by n the unit outward
normal to Ω. Let

(f, g)0,Ω :=

∫
Ω

fg

be the inner product in L2(Ω) and ∥ · ∥0,Ω the corresponding norm.
As usual, for all s > 0, ∥ · ∥s,Ω stands for the norm of the Hilbertian
Sobolev space Hs(Ω) and |·|s,Ω for the corresponding seminorm. The
space H1/2(Γ) is defined by localization on the Lipschitz surface Γ. We
denote by ∥ · ∥1/2,Γ the norm in H1/2(Γ) and ⟨·, ·⟩Γ stands for the duality
pairing between H1/2(Γ) and its dual H−1/2(Γ). Let γ : H1(Ω) → H1/2(Γ)
and γ : H1(Ω)3 → H1/2(Γ)3 be the standard trace operator acting on
scalar and vector fields respectively. In what follows we use φ|Γ and φ|Γ
to denote γ(φ) and γ(φ) for any φ ∈ H1(Ω) and φ ∈ H1(Ω)3 respectively.

2.1 Normal and tangential traces

We recall that

H(div; Ω) :=
{
v ∈ L2(Ω)3 : div v ∈ L2(Ω)

}
endowed with the norm ∥v∥H(div;Ω) :=

(
∥v∥20,Ω + ∥ div v∥20,Ω

)1/2 is a
Hilbert space and that C∞(Ω)3 is dense in H(div; Ω). By using this den-
sity result, the mapping γn : C∞(Ω)3 → L2(Γ) given by v 7→ γn(v) :=
v|Γ ·n, can be extended by continuity to define the normal trace operator
(see, for instance, [18, Theorem 3.24])

γn : H(div; Ω) → H−1/2(Γ),

which is bounded, surjective and possesses a right inverse. Moreover, the
following Green’s identity holds for any v ∈ H(div; Ω) and φ ∈ H1(Ω)

(v,∇φ)0,Ω + (div v, φ)0,Ω = ⟨v · n, φ⟩Γ, (1)

where, as usual, v · n denotes γn(v). Furthermore, we denote by
H0(div; Ω) the kernel of γn in H(div; Ω), i.e.,

H0(div; Ω) = {v ∈ H(div; Ω) : v · n = 0 on Γ} .
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We also recall that

H(curl; Ω) :=
{
v ∈ L2(Ω)3 : curlv ∈ L2(Ω)3

}
endowed with the norm ∥v∥H(curl;Ω) :=

(
∥v∥20,Ω + ∥ curlv∥20,Ω

)1/2 is a
Hilbert space and that C∞(Ω)3 is dense in H(curl; Ω) (see, for instance,
[18, Theorem 3.26]). Tangential traces of functions in H(curl; Ω) are
also understood even in the case of polyhedral domains thanks to the
recent results given by Buffa & Ciarlet [19, 20] and Buffa, Costabel &
Sheen [21]. We give here a brief summary of these fundamental tools.
We begin by considering the space

L2
τ (Γ) :=

{
λ ∈ L2(Γ)3 : λ · n = 0

}
,

endowed with the standard norm in L2(Γ)3.
We define the tangential trace γτ : C∞(Ω)3 → L2

τ (Γ) and the tan-
gential component trace πτ : C∞(Ω)3 → L2

τ (Γ) as γτv := v|Γ × n and
πτv := n× (v|Γ×n) respectively. The previous traces can be extended
by continuity to H1(Ω)3.

The spaces H
1/2
⊥ (Γ) := γτ (H

1(Ω)3) and H
1/2
∥ (Γ) := πτ (H

1(Ω)3), are
respectively endowed with the Hilbert norms

∥η∥
H

1/2
⊥ (Γ)

:= inf
w∈H1(Ω)3

{∥w∥1,Ω : γτw = η} ,

∥η∥
H

1/2
∥ (Γ)

:= inf
w∈H1(Ω)3

{∥w∥1,Ω : πτw = η} .

Let us notice that the density of H1/2(Γ)3 in L2(Γ)3 ensures that H1/2
⊥ (Γ)

and H
1/2
∥ (Γ) are dense subspaces of L2

τ (Γ). The dual spaces of H1/2
⊥ (Γ)

and H
1/2
∥ (Γ) with L2

τ (Γ) as pivot space, are denoted by H
−1/2
⊥ (Γ) and

H
−1/2
∥ (Γ) respectively.

By using the density of C∞(Ω)3 in H(curl; Ω) and the well known
Green’s formula (see, for instance, [18, Corollary 3.20])

(v, curlw)0,Ω − (curlv,w)0,Ω =

∫
Γ

γτv · πτw ∀v, w ∈ C∞(Ω)3,
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it is easy to deduce that γτ and πτ can be extended to define bounded
tangential mappings from H(curl; Ω) onto H

−1/2
∥ (Γ) and from H(curl; Ω)

onto H
−1/2
⊥ (Γ) respectively. The space H0(curl; Ω) stands for the kernel

of γτ in H(curl; Ω), i.e.,

H0(curl; Ω) := {v ∈ H(curl; Ω) : v × n = 0 on Γ} ,

where, as usual, v|Γ × n denotes γτv.
The ranges of γτ and πτ are characterized in the following result.

We refer to [19, 21] for the definition of the differential operators divΓ
and curlΓ on piecewise smooth Lipschitz boundaries.
Theorem 2.1. Let

H−1/2 (divΓ; Γ) :=
{
λ ∈ H

−1/2
∥ (Γ) : divΓλ ∈ H−1/2(Γ)

}
and

H−1/2 (curlΓ; Γ) :=
{
λ ∈ H

−1/2
⊥ (Γ) : curlΓλ ∈ H−1/2(Γ)

}
.

Then

γτ : H(curl; Ω) → H−1/2 (divΓ; Γ) , πτ : H(curl; Ω) → H−1/2 (curlΓ; Γ)

are surjective and possess a continuous right inverse.
The spaces H−1/2 (divΓ; Γ) and H−1/2 (curlΓ; Γ) are dual to each other,

when L2
τ (Γ) is used as pivot space, i.e., the usual L2

τ (Γ)-inner product
can be extended to a duality pairing ⟨·, ·⟩τ,Γ between H−1/2 (divΓ; Γ) and
H−1/2 (curlΓ; Γ). Moreover, the following Green’s identity holds true

(v, curlw)0,Ω − (curlv,w)0,Ω = ⟨γτv,πτw⟩τ,Γ ∀v,w ∈ H(curl; Ω).

(2)

Proof. See Theorem 4.1 and Lemma 5.6 of [21].

Since in the eddy current problem the physical domain requires to be
split into two non-overlapping domains: the conductor and the insulator
domain (see Section 3.1 below), we end this subsection by recalling the
following classical result that will be used often in the rest of the paper.
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Lemma 1. Assume Ω is split into two parts Ω = Ω1 ∪Ω2, where Ω1 and
Ω2 are two non-overlapping Lipschitz domains. Let Σ := ∂Ω1 ∩ ∂Ω2 be
the interface between the two subdomains and let ν be a unit normal to
Σ.

a) A function v belongs to H(div; Ω) if and only if its restrictions v|Ω1

and v|Ω2 belong to H(div; Ω1) and H(div; Ω2), respectively, and

v|Ω1 · ν = v|Ω2 · ν on Σ.

b) A function v belongs to H(curl; Ω) if and only if its restrictions v|Ω1

and v|Ω2 belong to H(curl; Ω1) and H(curl; Ω2), respectively and

v|Ω1 × ν = v|Ω2 × ν on Σ.

Proof. See, for instance, [18, Lemma 5.3].

2.2 Basic spaces for time dependent problems

Since we will deal with a time-domain problem, besides the Sobolev
spaces defined above, we need to introduce spaces of functions defined
on a bounded time interval (0, T ) and with values in a separable Hilbert
space V , whose norm is denoted here by ∥ · ∥V . We use the notation
C0([0, T ];V ) for the Banach space consisting of all continuous functions
f : [0, T ] → V . More generally, for any k ∈ N, Ck([0, T ];V ) denotes the
subspace of C0([0, T ];V ) of all functions f with (strong) derivatives of
order at most k in C0([0, T ];V ), i.e.,

Ck([0, T ];V ) :=

{
f ∈ C0([0, T ];V ) :

djf

dtj
∈ C0([0, T ];V ), 1 ≤ j ≤ k

}
.

We also consider the space L2(0, T ;V ) of classes of functions f :
(0, T ) → V that are Böchner-measurable and such that

∥f∥2L2(0,T ;V ) :=

∫ T

0

∥f(t)∥2V dt < +∞.
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Furthermore, we will use the space

H1(0, T ;V ) :=

{
f ∈ L2(0, T ;V ) :

d

dt
f ∈ L2(0, T ;V )

}
,

where d
dt
f is the (generalized) time derivative of f ; see, for instance, [22,

Section 23.5].

3 The model problem

3.1 Eddy current problem

We consider a standard eddy current problem: to determine the electro-
magnetic fields induced in a three-dimensional conducting domain by a
given source time-dependent compactly-supported current density. The
eddy current problem is in principle posed in the whole space. However,
we restrict it to a bounded computational domain containing both, the
conductor and the support of the source current, such that adequate
boundary conditions can be imposed on its boundary. To this aim, we
choose the geometry of the computational domain as simple as possible
(e.g., simply connected with a connected boundary).

Let Ωc ⊂ R3 be the conducting domain and let us assume that it is
an open and bounded set with boundary Γc. Let Ω ⊂ R3 be a simply
connected bounded domain with a connected boundary Γ, such that
Ωc ⊂ Ω. We suppose that both, Ω and Ωc are Lipschitz domains and
we denote by n and nc the outward unit normal vectors to Ω and Ωc,
respectively. Let Ωd := Ω \ Ωc be the subdomain of Ω occupied by
dielectric material, which includes the support of the source current Jd

(see Figure 1).
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W c

2

W
1

c

supp J
d

W

Wd

Figure 1: The geometrical setting of problem. In this example the conductor Ωc

has two connected components Ω1
c and Ω2

c , Ω is the computational domain (the box)
which contains the conductor and support of Jd, and Ωd = Ω \ Ωc is the dielectric.

The electric and magnetic fields E : Ωc × [0, T ] → R3 and H :
Ω × [0, T ] → R3 are solutions of a submodel of Maxwell’s equations
obtained by neglecting the displacement currents (see, for instance, [13]):

curlH = σE in Ωc × [0, T ], (3)
∂(µH)

∂t
+ curlE = 0 in Ωc × [0, T ], (4)

curlH = Jd in Ωd × [0, T ], (5)
div(µH) = 0 in Ω× [0, T ], (6)

H(x, 0) = H0(x) in Ω, (7)
H|Ωc × nc = H|Ωd

× nc on Γc × [0, T ] (8)
H × n = 0 on Γ× [0, T ]. (9)

Let us remark that because of H(·, t) must belong to H(curl; Ω) a.e.
in [0, T ], Lemma 1 implies the magnetic field has to satisfy the coupling
conditions, Equation (8).

The magnetic permeability µ and the conductivity σ are bounded
functions satisfying:

0 < µmin ≤ µ(x) ≤ µmax a.e.x ∈ Ω,

0 < σmin ≤ σ(x) ≤ σmax a.e.x ∈ Ωc.
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The data of the problem are the source current density
Jd ∈ L2(0, T ; L2(Ω)3), for which we assume for a.e. t ∈ (0, T )

suppJd(·, t) ⊂ Ωd and divJd(·, t) = 0 in Ωd,

and the initial magnetic field H0 ∈ H(curl; Ω).

3.2 The A, V −A potential formulation

We now recall a classical formulation of the eddy current problem in
terms of two potentials: a magnetic vector potential A and an electric
scalar potential V . We refer to Bíró & Preis [13] for a detailed discu-
ssion, which also includes numerical tests showing the efficiency of this
approach.

In order to introduce the magnetic vector potential, we notice that,
by using [23, Theorem I.3.5.], Equation (6) implies that there exists a
unique A ∈ L2(0, T ;H(curl; Ω)) such that

µH = curlA in Ω× [0, T ], (10)
divA = 0 in Ω× [0, T ], (11)
A · n = 0 on Γ× [0, T ]. (12)

We notice that from (8) and (10) it follows that(
1

µ
curlA

)∣∣∣∣
Ωc

× nc =

(
1

µ
curlA

)∣∣∣∣
Ωd

× nc on Γc × [0, T ]. (13)

Moreover, since A ∈ L2(0, T ;H(curl; Ω)), from Lemma 1 and Equa-
tion (11) we have

A|Ωc
× nc = A|Ωd

× nc on Γc × [0, T ], (14)
A|Ωc

· nc = A|Ωd
· nc on Γc × [0, T ]. (15)

Next, according to Bíró & Preis [13] (see also Bíró & Valli [14]) we
introduce an electric scalar potential V : Ωc × [0, T ] → R, such that

E = −∂A

∂t
−∇V in Ωc × [0, T ].
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If we define

v(x, t) :=

∫ t

0

V (x, s) ds a.e.x ∈ Ωc, a.e. t ∈ [0, T ], (16)

we obtain
E = −∂A

∂t
−∇∂v

∂t
in Ωc × [0, T ]. (17)

Hence, from (3) there follows that

div

(
σ
∂A

∂t
+ σ∇∂v

∂t

)
= 0 in Ωc × [0, T ]. (18)

Moreover, since H(·, t) ∈ H(curl; Ω) a.e. t in [0, T ], we have curlH(·, t) ∈
H(div; Ω) a.e. t in [0, T ], and consequently, from Lemma 1 we have

curlH|Ωc · nc − curlH|Ωd
· nc = 0 on Γc × [0, T ].

Then, from (3), (5) and recalling that suppJd(·, t) ⊂ Ωd a.e. t in [0, T ],
we obtain

σE · nc = 0 on Γc × [0, T ].

Therefore, the Equation (17) implies that(
σ
∂A

∂t
+ σ∇∂v

∂t

)
· nc = 0 on Γc × [0, T ]. (19)

On the other hand, using the Equation (3) together with the Equa-
tions (10) and (17), there follows that

σ

(
∂A

∂t
+∇∂v

∂t

)
+ curl

(
1

µ
curlA

)
= 0 in Ωc × [0, T ]. (20)

Moreover, from the Equations (5) and (10), we have

curl

(
1

µ
curlA

)
= Jd in Ωd × [0, T ]. (21)
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The Equations (11)-(15) together with the Equations (18)–(21) will
be collected in the potential formulation. Hence, we are led to the fol-
lowing formulation of problem (3)–(9) in terms of the potentials A :
Ω× [0, T ] → R3 and v : Ωc × [0, T ] → R:(

σ
∂A

∂t
+ σ∇∂v

∂t

)
+ curl

(
1

µ
curlA

)
= 0 in Ωc × [0, T ], (22)

div

(
σ
∂A

∂t
+ σ∇∂v

∂t

)
= 0 in Ωc × [0, T ], (23)

curl

(
1

µ
curlA

)
= Jd in Ωd × [0, T ], (24)

divA = 0 in Ω× [0, T ], (25)
A · n = 0 on Γ× [0, T ], (26)(

σ
∂A

∂t
+ σ∇∂v

∂t

)
· nc = 0 on Γc × [0, T ], (27)(

1

µ
curlA

)∣∣∣∣
Ωc

× nc =

(
1

µ
curlA

)∣∣∣∣
Ωd

× nc on Γc × [0, T ], (28)

A|Ωc
× nc = A|Ωd

× nc on Γc × [0, T ], (29)
A|Ωc

· nc = A|Ωd
· nc on Γc × [0, T ], (30)

and satisfying

A(x, 0) = A0(x) a.e.x ∈ Ω, (31)
v(x, 0) = 0 a.e.x ∈ Ωc, (32)

1

µ
curlA× n = 0 on Γ× [0, T ]. (33)

Remark 3.1. Equation (33) is obtained from the Equations (7), (9) and
(10), and the Equation (32) is a consequence of (16). Furthermore, the
initial condition A0 in (31) must satisfy

curlA0 = µH0, divA0 = 0 in Ω; A0 · n = 0 on Γ,

and since Ω is a simply connected set, it can be characterized as the
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unique solution of the boundary value problem (see [23, Theorem I.3.5.]):

−∆A0 = curl(µH0), divA0 = 0 in Ω;

curlA0 · n = µH0, A0 · n = 0 on Γ.

Moreover, A0 can be computed by using a finite element approxima-
tion of the following mixed problem [24, Section 4]: find (A0, λ) ∈
H(curl; Ω)×M such that∫

Ω

curlA0 · curlv +

∫
Ω

A0 · ∇λ =

∫
Ω

µH0 · curlv ∀v ∈ H(curl; Ω),∫
Ω

A0 · ∇η = 0 ∀η ∈ M,

(34)

where

M :=

{
η ∈ H1(Ω) :

∫
Ω

η = 0

}
.

In order to prove the well-posedness of this last problem, we can use the
well-known Babuska-Brezzi theory for mixed problems (see for instance
[25] and the references given there). Furthermore, it follows easily that
the Lagrange multiplier λ vanishes identically.
Remark 3.2. The differential constraint (25) is called the Coulomb gauge
condition and it is necessary to assure the uniqueness of potential A [13].
The Coulomb gauge condition is not easy to treat at the discrete level,
because it is not simple to construct a suitable space of finite elements
which are divergence-free. Here we will follow the ideas from [14], by
using the addition of a div− div term to our variational formulation (see
Section 4 bellow), which is equivalent to add a penalization term in the
Ampère law (see, for instance, [13, 14]).

Another possible alternative can be to introduce a Lagrange multi-
plier (as λ in the Equation (34)) or use an additional scalar magnetic
potential. These approaches have been used to impose some differential
constraints, which are necessaries for other eddy current formulations,
see for instance [4, Chapters 4–5], [5], [7], [10], [15], [26].
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4 Variational formulation

The aim of this section is to give a variational formulation of Problem,
Equations(22)–(33). To do this, we introduce the following functional
spaces:

X := H(curl; Ω) ∩H0(div; Ω), H1
♯ (Ωc) :=

m∏
j=1

H1(Ωj
c)/R,

where Ω1
c, . . . ,Ω

m
c are the connected components of Ωc. The spaces X

and H1
♯ (Ωc) are endowed respectively with the norms

∥Z∥X :=
(
∥Z∥20,Ω + ∥ divZ∥20,Ω + ∥ curlZ∥20,Ω

)1/2 (35)

and
∥u∥H1

♯ (Ωc) := ∥∇u∥0,Ωc . (36)

Let Z ∈ X . By multiplying the Equations (22) and (24) by Z, inte-
grating in Ωc and Ωd respectively and summing the resulting equations,
we deduce that∫

Ω

curl

(
1

µ
curlA

)
·Z = − ∂

∂t

∫
Ωc

σ (A+∇v) ·Z +

∫
Ωd

Jd ·Z. (37)

We notice now that from (22), (24), (28) and Lemma 1 it follows that

1

µ
curlA(·, t) ∈ H(curl; Ω) a.e. t ∈ [0, T ]

Then, by integrating by parts (see (2)) and using (33), we obtain∫
Ω

curl

(
1

µ
curlA

)
·Z =

∫
Ω

1

µ
curlA · curlZ.

Hence, from (37) we have

∂

∂t

∫
Ωc

σ (A+∇v) ·Z +

∫
Ω

1

µ
curlA · curlZ =

∫
Ωd

Jd ·Z
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Consequently, if µ∗ > 0 is a constant (which represents a suitable average
of µ in Ω, with µmin ≤ µ∗ ≤ µmax), by using (25), we deduce

d

dt

∫
Ωc

σ (A+∇v) ·Z +

∫
Ω

1

µ
curlA · curlZ +

1

µ∗

∫
Ω

divA divZ

=

∫
Ωd

Jd ·Z.

for all Z ∈ X .
On the other hand, by integrating by parts (1) and using (23) and

(27)
d

dt

∫
Ωc

σ (A+∇v) · ∇u = 0 ∀u ∈ H1
♯ (Ωc).

Summing the last two equations, we obtain the following variational
formulation of Problem (22)–(33):

Find (A, v) ∈ L2(0, T ;X ×H1
♯ (Ωc))∩H1(0, T ; L2(Ωc)

3×H1
♯ (Ωc)) such

that

d

dt
(A+∇v,Z +∇u)σ+A (A,Z) = (Jd,Z)0,Ω ∀(Z, u) ∈ X×H1

♯ (Ωc)

(38)
and satisfying the initial condition

A(·, 0) = A0 in Ω; v(·, 0) = 0 in Ωc, (39)

where
(u,w)σ :=

∫
Ωc

σu ·w

and

A (A,Z) =
(
µ−1 curlA, curlZ

)
0,Ω

+ µ−1
∗ (divA, divZ)0,Ω .

Remark 4.1. To our knowledge, the well-posedness of Problem (38)-
(39) has not been proved yet. We have tried to apply the theoretical
framework for parabolic problems arising from electromagnetism (see
Zlámal [27, 28]) and for classical degenerate parabolic problems (see
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Showalter [29, Chapter III]), without satisfactory results in both cases.
However, by adapting the techniques from [27, 28], it is easily seen that
Problem (38)-(39) has at most one solution, but this is not the case for
the existence result. The main difficulty is that the bilinear form

((A, v), (Z, u)) 7→ (A+∇v,Z +∇u)σ,Ωc

is not an inner product in L2(Ωc)× H1
♯ (Ωc).

Remark 4.2. It is straightforward to verify that a solution of Problem (38)-
(39) is actually a solution of the strong form of the problem given by
Equations (22)-(33). In particular, we can obtain the gauge condition
divA = 0 as follows: for any t ∈ [0, T ], let ξ ∈ H1(Ω) be a weak solution
of the compatible Neumann problem ∆ξ = divA(t) in Ω, ∂ξ/∂n = 0 on
Γ. Hence, by testing (38) with Z := ∇ξ and u := −ξ|Ωc + |Ωc|−1 ∫

Ωc
ξ,

we obtain µ−1
∗ ∥ divA(t)∥20,Ω = 0.

Remark 4.3. The idea of using an average µ∗ to impose the Coulomb
gauge condition in the weak formulation is taken from [14]. This is
necessary because a finite element approximation based on a weak form,
in which the term

∫
Ω
µ−1 divZ divW is present, can be inefficient if the

coefficient µ has jumps (see [30, Section 5.7.4]).

5 A fully discrete scheme

In what follows we assume that Ω and Ωc are Lipschitz polyhedra (we
recall that Ω is simply-connected). Let {Th}h be a regular family of
tetrahedral meshes of Ω such that each element K ∈ Th is contained
either in Ωc or in Ωd. As usual, h stands for the largest diameter of
tetrahedra K in Th.

Consider the following finite element spaces:

X h :=
{
Zh ∈ X : Zh

∣∣
K
∈ P3

1 ∀K ∈ Th with K ⊂ Ω
}

and

Mh :=
{
uh ∈ H1

♯ (Ωc) : uh

∣∣
K
∈ P1 ∀K ∈ Th with K ⊂ Ωc

}
.
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We consider a uniform partition {tn := n∆t : n = 0, . . . , N} of [0, T ]
with a step size ∆t := T

N
. For any finite sequence {θn : n = 0, · · · , N},

let

∂̄θn :=
θn − θn−1

∆t
, n = 1, 2, . . . , N.

The fully-discrete version of Problem (38)–(39) reads as follows:
Find (An

h, v
n
h) ∈ X h ×Mh, n = 1, 2, . . . , N such that:(

∂̄An
h +∇∂̄vnh ,Z +∇u

)
σ
+ A (An

h,Z) = (Jd(tn),Z)0,Ω (40)

for any (Z, u) ∈ X h ×Mh and satisfying

A0
h = A0,h, v0h = 0, (41)

where A0,h ∈ X h is a suitable approximation of A0 to obtain optimal
error estimates (see Corollary 6.1 below).

In order to prove that Problem (40)–(41) has a unique solution, we
first notice that at each iteration step we need to find (An

h, v
n
h) ∈ X h×Mh

such that

(An
h +∇vnh ,Z +∇u)σ +∆tA (An

h,Z) = Fn(Z, u),

where

Fn(Z, u) = ∆t (Jd(tn),Z)0,Ω +
(
An−1

h +∇vn−1
h ,Z +∇u

)
σ
.

Hence, the existence and uniqueness of solution of Problem (40)–(41)
follows by combining the Lax-Milgram’s Lemma and the following ellip-
ticity result.

Lemma 2. There exists a constant C > 0 such that

(Z +∇u,Z +∇u)σ + A (Z,Z) ≥ C
{
∥Z∥2X + ∥u∥2H1

♯ (Ωc)

}
(42)

for any Z ∈ X and u ∈ H1
♯ (Ωc).
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Proof. First of all, we notice that for Z ∈ X , u ∈ H1
♯ (Ωc) we have

(Z +∇u,Z +∇u)σ + A (Z,Z)

=

∫
Ωc

σ |Z +∇u|2 +
∫
Ω

1

µ
|curlZ|2 +

∫
Ω

1

µ∗
|divZ|2

≥ σmin

∫
Ωc

|Z +∇u|2 + µ−1
max

(∫
Ω

|curlZ|2 +
∫
Ω

|divZ|2
)
.

(43)

Now, since Ω is a Lipschitz and simply-connected set, there exists a
constant C1 > 0 such that (see, for instance, [23, Lemma I.3.6] or [24,
Corollary 3.16])∫

Ω

|Z|2 ≤ C1

{∫
Ω

|curlZ|2 +
∫
Ω

|divZ|2
}

∀Z ∈ X . (44)

Consequently, from (43), we obtain

(Z +∇u,Z +∇u)σ + A (Z,Z)

≥ C2

[∫
Ωc

|Z +∇u|2 +
∫
Ω

|Z|2 +
∫
Ω

|curlZ|2 +
∫
Ω

|divZ|2
]

≥ C2

[∫
Ωc

|Z +∇u|2 + 1

2

∫
Ω

|Z|2 + 1

2
∥Z∥2X

]
≥ C3

[∫
Ωc

|Z +∇u|2 +
∫
Ωc

|Z|2 + ∥Z∥2X
]
.

Then by noticing that∫
Ωc

|Z +∇u|2 +
∫
Ωc

|Z|2 = 2

∫
Ωc

|Z|2 + 2

∫
Ωc

Z · ∇u+

∫
Ωc

|∇u|2

and using the inequality

−2Z · ∇u ≤ 2 |Z| |∇u| ≤ 1

ε
|Z|2 + ε |∇u|2 ∀ε > 0,
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it follows that
(Z +∇u,Z +∇u)σ + A (Z,Z)

≥ C3

[(
2− 1

ε

)∫
Ωc

|Z|2 + (1− ε)

∫
Ωc

|∇u|2 + ∥Z∥2X
]
.

Consequently, by taking 1/2 < ε < 1, we obtain (42).

6 Error estimates

In this section we will prove error estimates for our fully-discrete scheme.
To this end, we have to assume that Problem (38)–(39) has a unique
solution and consider the elliptic projection operators Ph : X → X h

and Qh : H1
♯ (Ωc) → Mh defined respectively by

PhZ ∈ X h : (PhZ −Z,Y )σ + A (PhZ −Z,Y ) = 0 ∀Y ∈ X h

and
Qhu ∈ Mh : (∇Qhu−∇u,∇w)σ = 0 ∀w ∈ Mh.

It is a simple matter to see that Lax-Milgram’s Lemma and Lemma 2
imply that Ph and Qh are well defined. Moreover, the well-known Cea’s
Lemma yields that there exist positive constants C1 and C2, independent
of h, such that

∥Z − PhZ∥X ≤ C1 inf
Y ∈Xh

∥Z − Y ∥X ∀Z ∈ X (45)

and

∥u−Qhu∥H1
♯ (Ωc) ≤ C2 inf

w∈Mh

∥u− w∥H1
♯ (Ωc) ∀u ∈ H1

♯ (Ωc). (46)

From now on, let us introduce the following notations:

ρn
1 := A(tn)− PhA(tn), δ

n
1 := PhA(tn)−An

h, τ
n
1 := ∂̄A(tn)− ∂tA(tn)

and

ρn2 := v(tn)−Qhv(tn), δ
n
2 := Qhv(tn)− vnh , τ

n
2 := ∂̄v(tn)− ∂tv(tn).

Furthermore, we denote

∥w∥σ := (w,w)1/2σ ∀w ∈ L2(Ωc)
2.
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Lemma 3. There exists a positive constant C, independent of h and ∆t,
such that

∥δn
1∥2X + ∥δn2 ∥2H1

♯ (Ωc)
+∆t

n∑
k=1

∥δk
1∥2X +∆t

n∑
k=1

∥∂̄δk
1 +∇∂̄δk2∥20,Ωc

≤ C

{
∥A0 −A0,h∥2X + ∥ρ0

1∥2X + ∥ρn
1∥2X +∆t

n∑
k=1

[
∥∂̄ρk

1∥2X + ∥ρk
1∥2X

+∥∂̄ρk2∥2H1
♯ (Ωc)

+ ∥τ k
1∥20,Ωc

+ ∥τ k2 ∥20,Ωc

]}

for n = 1, . . . , N .

Proof. Let 1 ≤ n ≤ N and 1 ≤ k ≤ n. It is straightforward to show that

(∂̄δk
1 +∇∂̄δk2 ,Z +∇u)σ + A (δk

1,Z)

= −(∂̄ρk
1 +∇∂̄ρk2,Z +∇u)σ − A (ρk

1,Z) + (τ k
1 +∇τ k2 ,Z +∇u)σ,

(47)

for any (Z, u) ∈ X h ×Mh.
Choosing (Z, u) = (δk

1, δ
k
2) in the last identity and using the estimates

(∂̄δk
1 +∇∂̄δk2 , δ

k
1 +∇δk2 , )σ ≥ 1

2∆t

[
∥δk

1 +∇δk2∥2σ − ∥δk−1
1 +∇δk−1

2 ∥2σ
]

and
A (δk

1, δ
k
1) ≥

1

µmax

[
∥ curl δk

1∥20,Ω + ∥ div δk
1∥20,Ω

]
,

we obtain

1

2∆t

[
∥δk

1 +∇δk2∥2σ − ∥δk−1
1 +∇δk−1

2 ∥2σ
]

+
1

µmax

[
∥ curl δk

1∥20,Ω + ∥ div δk
1∥20,Ω

]
≤ −(∂̄ρk

1 +∇∂̄ρk2, δ
k
1 +∇δk2)σ − A (ρk

1, δ
k
1) + (τ k

1 +∇τ k2 , δ
k
1 +∇δk2)σ.
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Then, by using the Cauchy-Schwartz inequality in the right hand side,
it follows that

1

∆t

[
∥δk

1 +∇δk2∥2σ − ∥δk−1
1 +∇δk−1

2 ∥2σ
]

+
1

µmax

[
∥ curl δk

1∥20,Ω + ∥ div δk
1∥20,Ω

]
≤ 1

2T
∥δk

1 +∇δk2∥2σ + C1

[
∥∂̄ρk

1 +∇∂̄ρk2∥2σ + ∥τ k
1 +∇τ k2 ∥2σ

+∥ curlρk
1∥20,Ω + ∥ divρk

1∥20,Ω
]

(48)

for k = 1, . . . , n. In particular,

∥δk
1 +∇δk2∥2σ − ∥δk−1

1 +∇δk−1
2 ∥2σ

≤ ∆t

2T
∥δk

1 +∇δk2∥2σ + 2C1∆t
[
∥∂̄ρk

1 +∇∂̄ρk2∥2σ + ∥τ k
1 +∇τ k2 ∥2σ

+∥ curlρk
1∥20,Ω + ∥ divρk

1∥20,Ω
]

for k = 1, . . . , n. Then, summing over k, we get

∥δn
1 +∇δn2 ∥2σ − ∥δ0

1 +∇δ02∥2σ

≤ ∆t

2T

n∑
k=1

∥δk
1 +∇δk2∥2σ + 2C1∆t

n∑
k=1

[
∥∂̄ρk

1 +∇∂̄ρk2∥2σ + ∥τ k
1 +∇τ k2 ∥2σ

+∥ curlρk
1∥20,Ω + ∥ divρk

1∥20,Ω
]

≤ 1

2
∥δn

1 +∇δn2 ∥2σ +
∆t

2T

n−1∑
k=1

∥δk
1 +∇δk2∥2σ + 2C1∆t

n∑
k=1

[
∥∂̄ρk

1 +∇∂̄ρk2∥2σ

+∥τ k
1 +∇τ k2 ∥2σ + ∥ curlρk

1∥20,Ω + ∥ divρk
1∥20,Ω

]
.

Hence,

∥δn
1 +∇δn2 ∥2σ

≤ 2∥δ0
1 +∇δ02∥2σ +

∆t

T

n−1∑
k=1

∥δk
1 +∇δk2∥2σ + 4C1∆t

n∑
k=1

[
∥∂̄ρk

1 +∇∂̄ρk2∥2σ

+∥τ k
1 +∇τ k2 ∥2σ + ∥ curlρk

1∥20,Ω + ∥ divρk
1∥20,Ω

]
.
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Therefore, the discrete Gronwall’s Lemma (see, for instance,
[31, Lemma 1.4.2]) leads to

∥δn
1 +∇δn2 ∥2σ

≤ C2

{
∥δ0

1 +∇δ02∥2σ +∆t

n∑
k=1

[
∥∂̄ρk

1 +∇∂̄ρk2∥2σ + ∥τ k
1 +∇τ k2 ∥2σ

+∥ curlρk
1∥20,Ω + ∥ divρk

1∥20,Ω
]}

for n = 1, . . . , N . Inserting the last inequality in (48), it follows that

[
∥δk

1 +∇δk2∥2σ − ∥δk−1
1 +∇δk−1

2 ∥2σ
]
+

∆t

µmax

[
∥ curl δk

1∥20,Ω + ∥ div δk
1∥20,Ω

]
≤ ∆t

2T
C2

{
∥δ0

1 +∇δ02∥2σ +∆t

k∑
j=1

[
∥∂̄ρj

1 +∇∂̄ρj2∥2σ + ∥τ j
1 +∇τ j2∥2σ

+∥ curlρj
1∥20,Ω + ∥ divρj

1∥20,Ω
]}

+ 2C1∆t
[
∥∂̄ρk

1 +∇∂̄ρk2∥2σ +∥τ k
1 +∇τ k2 ∥2σ + ∥ curlρk

1∥20,Ω + ∥ divρk
1∥20,Ω

]
for k = 1, . . . , n. Now, summing over k and recalling that δ02 = 0, we get
the estimates

∥δn
1 +∇δn2 ∥2σ − ∥δ0

1∥2σ +
∆t

µmax

n∑
k=1

[
∥ curl δk

1∥20,Ω + ∥ div δk
1∥20,Ω

]
≤ 1

2
C2∥δ0

1∥2σ +
C2(∆t)2

2T

n∑
k=1

k∑
j=1

[
∥∂̄ρj

1 +∇∂̄ρj2∥2σ + ∥τ j
1 +∇τ j2∥2σ

+∥ curlρj
1∥20,Ω + ∥ divρj

1∥20,Ω
]
+ 2C1∆t

n∑
k=1

[
∥∂̄ρk

1 +∇∂̄ρk2∥2σ

+∥τ k
1 +∇τ k2 ∥2σ + ∥ curlρk

1∥20,Ω + ∥ divρk
1∥20,Ω

]
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and therefore

∥δn
1 +∇δn2 ∥2σ − ∥δ0

1∥2σ +
∆t

µmax

n∑
k=1

[
∥ curl δk

1∥20,Ω + ∥ div δk
1∥20,Ω

]
≤ C2∥δ0

1∥2σ + C2∆t

n∑
j=1

[
∥∂̄ρj

1 +∇∂̄ρj2∥2σ + ∥τ j
1 +∇τ j2∥2σ

+∥ curlρj
1∥20,Ω + ∥ divρj

1∥20,Ω
]
+ 2C1∆t

n∑
k=1

[
∥∂̄ρk

1 +∇∂̄ρk2∥2σ

+∥τ k
1 +∇τ k2 ∥2σ + ∥ curlρk

1∥20,Ω + ∥ divρk
1∥20,Ω

]
.

Consequently, using (44), we have

∥δn
1 +∇δn2 ∥2σ +∆t

n∑
k=1

∥δk
1∥2X

≤ C3

{
∥δ0

1∥2X +∆t
n∑

k=1

[
∥∂̄ρk

1 +∇∂̄ρk2∥2σ + ∥τ k
1 +∇τ k2 ∥2σ

+∥ curlρk
1∥20,Ω + ∥ divρk

1∥20,Ω
]}

(49)

for n = 1, . . . , N .
Let us now take (Z, u) = (∂̄δk

1, ∂̄δ
k
2) in (47) to obtain

∥∂̄δk
1 + ∂̄∇δk2∥2σ + A (δk

1, ∂̄δ
k
1)

= −(∂̄ρk
1 +∇∂̄ρk2, ∂̄δ

k
1 + ∂̄∇δk2)σ − A (ρk

1, ∂̄δ
k
1) + (τ k

1 +∇τ k2 , ∂̄δ
k
1 + ∂̄∇δk2)σ.

Then,

∥∂̄δk
1 + ∂̄∇δk2∥2σ + A (δk

1, ∂̄δ
k
1)

≤ ∥∂̄ρk
1 +∇∂̄ρk2∥σ∥∂̄δk

1 + ∂̄∇δk2∥σ + ∥τ k
1 +∇τ k2 ∥σ∥∂̄δk

1 + ∂̄∇δk2∥σ
− A (ρk

1, ∂̄δ
k
1)

= ∥∂̄ρk
1 +∇∂̄ρk2∥σ∥∂̄δk

1 + ∂̄∇δk2∥σ + ∥τ k
1 +∇τ k2 ∥σ∥∂̄δk

1 + ∂̄∇δk2∥σ

+ A (∂̄ρk
1, δ

k−1
1 )− 1

∆t

[
A (ρk

1, δ
k
1)− A (ρk−1

1 , δk−1
1 )

]
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and consequently, using the Cauchy-Schwarz inequality on the right hand
side, we deduce that

∥∂̄δk
1 + ∂̄∇δk2∥2σ + A (δk

1, ∂̄δ
k
1)

≤ 1

2
∥∂̄δk

1 + ∂̄∇δk2∥2σ + C4

[
∥∂̄ρk

1 +∇∂̄ρk2∥2σ + ∥τ k
1 +∇τ k2 ∥σ

+∥ curl ∂̄ρk
1∥20,Ω + ∥ div ∂̄ρk

1∥20,Ω + ∥ curl δk−1
1 ∥20,Ω

+∥ div δk−1
1 ∥20,Ω

]
− 1

∆t

[
A (ρk

1, δ
k
1)− A (ρk−1

1 , δk−1
1 )

]
.

Hence, using the inequality

A (δk
1, ∂̄δ

k
1) ≥

1

2∆t

[
A (δk

1, δ
k
1)− A (δk−1

1 , δk−1
1 )

]
on the left hand side, leads to

∆t∥∂̄δk
1 + ∂̄∇δk2∥2σ + A (δk

1, δ
k
1)− A (δk−1

1 , δk−1
1 )

≤ 2C4∆t
[
∥∂̄ρk

1 +∇∂̄ρk2∥σ + ∥τ k
1 +∇τ k2 ∥σ + ∥ curl ∂̄ρk

1∥20,Ω + ∥ div ∂̄ρk
1∥20,Ω

+∥ curl δk−1
1 ∥20,Ω + ∥ div δk−1

1 ∥20,Ω
]
− 2

[
A (ρk

1, δ
k
1)− A (ρk−1

1 , δk−1
1 )

]
(50)

for k = 1, . . . , n. Summing over k, we have

∆t
n∑

k=1

∥∂̄δk
1 + ∂̄∇δk2∥2σ + A (δn

1 , δ
n
1 )− A (δ0

1, δ
0
1)

≤ 2C4∆t

n∑
k=1

[
∥∂̄ρk

1 +∇∂̄ρk2∥σ + ∥τ k
1 +∇τ k2 ∥σ + ∥ curl ∂̄ρk

1∥20,Ω

+∥ div ∂̄ρk
1∥20,Ω + ∥ curl δk−1

1 ∥20,Ω + ∥ div δk−1
1 ∥20,Ω

]
− 2

[
A (ρn

1 , δ
n
1 )− A (ρ0

1, δ
0
1)
]
.

Therefore, by noticing∣∣A (ρk
1, δ

k
1)
∣∣ ≤A (ρk

1,ρ
k
1)

1/2A (δk
1, δ

k
1)

1/2 ≤ 1

4
A (δk

1, δ
k
1) + A (ρk

1,ρ
k
1)

≤1

4
A (δk

1, δ
k
1) +

1

µmin

∥ρk
1∥2X ≤ 1

µmin

(
∥δk

1∥2X + ∥ρk
1∥2X

)
,
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for k = 0, 1, . . . , n, it follows that

∆t
n∑

k=1

∥∂̄δk
1 + ∂̄∇δk2∥2σ + A (δn

1 , δ
n
1 )

≤ 2C4∆t
n∑

k=1

[
∥∂̄ρk

1 +∇∂̄ρk2∥σ+ ∥τ k
1 +∇τ k2 ∥σ+ ∥ curl ∂̄ρk

1∥20,Ω

+∥ div ∂̄ρk
1∥20,Ω + ∥ curl δk−1

1 ∥20,Ω + ∥ div δk−1
1 ∥20,Ω

]
+

1

2
A (δn

1 , δ
n
1 )

+ C5

[
∥ρn

1∥2X + ∥ρ0
1∥2X + ∥δ0

1∥2X
]
.

Then, we obtain

∆t

n∑
k=1

∥∂̄δk
1 + ∂̄∇δk2∥2σ + A (δn

1 , δ
n
1 )

≤ C6

{
∥ρn

1∥2X + ∥ρ0
1∥2X + ∥δ0

1∥2X +∆t
n∑

k=1

[
∥∂̄ρk

1 +∇∂̄ρk2∥σ+ ∥τ k
1 +∇τ k2 ∥σ

+ ∥ curl ∂̄ρk
1∥20,Ω + ∥ div ∂̄ρk

1∥20,Ω + ∥ curl δk
1∥20,Ω + ∥ div δk

1∥20,Ω
]}

for n = 1, . . . , N .
Combining this last estimate with (49), using Lemma 2 and noticing

that

∥δ0
1∥2X = ∥PhA0 −A0,h∥2X ≤ 2

(
∥ρ0

1∥2X + ∥A0 −A0,h∥2X
)
,

we conclude the desired estimate.

Theorem 6.1. Let en
1 := A(tn)−An

h and en2 := v(tn)− vnh . If

A ∈ H1(0, T ;X )∩H2(0, T ; L2(Ω)), v ∈ H1(0, T ; H1
♯ (Ωc))∩H2(0, T ; L2(Ωc)),
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there exists a constant C > 0, independent of h and ∆t, such that

max
1≤n≤N

[
∥en

1∥2X + ∥en2∥2H1
♯ (Ωc)

]
+∆t

N∑
n=1

∥en
1∥2X +∆t

N∑
n=1

∥∂̄en
1 +∇∂̄en2∥20,Ωc

≤ C

{
∥A0 −A0,h∥2X+max

1≤n≤N

[
inf

Z∈Xh

∥A(tn)−Z∥2X + inf
u∈Mh

∥v(tn)− u∥2H1
♯ (Ωc)

]

+∆t
N∑

n=1

inf
Z∈Xh

∥A(tn)−Z∥2X +

∫ T

0

[
inf

Z∈Xh

∥∂tA(t)−Z∥2X
]
dt

+

∫ T

0

[
inf

u∈Mh

∥∂tv(t)− u∥2H1
♯ (Ωc)

]
dt

+ (∆t)2
∫ T

0

[
∥∂ttA(t)∥20,Ωc

+ ∥∂ttv(t)∥20,Ωc

]
dt

}
.

Proof. Since en
1 = ρn

1 + δn
1 and en2 = ρn2 + δn2 , from the previous lemma

we obtain[
∥en

1∥2X + ∥en2∥2H1
♯ (Ωc)

]
+∆t

n∑
k=1

∥ek
1∥2X +∆t

n∑
k=1

∥∂̄ek
1 +∇∂̄ek2∥20,Ωc

≤ C

{
∥A0 −A0,h∥2X + ∥ρ0

1∥2X + ∥ρn
1∥2X + ∥ρn2∥2H1

♯ (Ωc)
+∆t

n∑
k=1

[
∥∂̄ρk

1∥2X

+∥ρk
1∥2X + ∥∂̄ρk2∥2H1

♯ (Ωc)
+ ∥τ k

1∥20,Ωc
+ ∥τ k2 ∥20,Ωc

]}
.
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Hence,

max
1≤n≤N

[
∥en

1∥2X + ∥en2∥2H1
♯ (Ωc)

]
+∆t

N∑
n=1

∥en
1∥2X +∆t

N∑
n=1

∥∂̄en
1 +∇∂̄en2∥20,Ωc

≤ C

{
∥A0 −A0,h∥2X + max

1≤n≤N

[
∥ρn

1∥2X + ∥ρn2∥2H1
♯ (Ωc)

]
+∆t

N∑
n=1

[
∥∂̄ρn

1∥2X

+∥ρn
1∥2X + ∥∂̄ρn2∥2H1

♯ (Ωc)
+ ∥τ n

1∥20,Ωc
+ ∥τn2 ∥20,Ωc

]}
.

(51)

The regularity assumptions on A and v allow us commute the time
derivative with Ph and Qh, i.e,

∂t (PhA(t)) = Ph (∂tA(t)) , ∂t (Qhv(t)) = Qh (∂tv(t)) .

Moreover, if we define ρh
1(t) := A(t) − PhA(t) and then from (45) it

follows that
N∑

n=1

∥∂̄ρn
1∥2X =

1

(∆t)2

N∑
n=1

∥∥∥∥∫ tn

tn−1

∂tρ
h
1(t) dt

∥∥∥∥2

X
≤ 1

∆t

N∑
n=1

∫ tn

tn−1

∥∂tρh
1(t)∥2Xdt

=
1

∆t

∫ T

0

∥∂tρh
1(t)∥2Xdt ≤ C

∆t

∫ T

0

[
inf

Z∈Xh

∥∂tA(t)−Z∥2X
]
dt

(52)

and, analogously if ρh2(t) := v(t)−Qhv(t), (46) implies
N∑

n=1

∥∂̄ρn
1∥2H1

♯ (Ωc)
≤ 1

∆t

∫ T

0

∥∂tρh2(t)∥2Xdt

≤ C

∆t

∫ T

0

[
inf

u∈Mh

∥∂tv(t)− u∥2H1
♯ (Ωc)

]
dt.

(53)

On the other hand, the Cauchy-Schwarz inequality shows that∣∣∣∣∣
∫ tk

tk−1

(tk−1 − t)∂ttA(t) dt

∣∣∣∣∣
2

≤ (∆t)3
∫ tk

tk−1

|∂ttA(t)|2 dt,
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thus, from Taylor’s Theorem we have

N∑
n=1

∥τ n
1∥20,Ωc

=
1

∆t

N∑
n=1

∥∥∥∥∥
∫ tk

tk−1

(tk−1 − t)∂ttA(t) dt

∥∥∥∥∥
2

0,Ωc

≤∆t

∫ T

0

∥∂ttA(t)∥20,Ωc
dt.

(54)

Analogously, we deduce

N∑
n=1

∥τn2 ∥20,Ωc
≤ ∆t

∫ T

0

∥∂ttv(t)∥20,Ωc
dt. (55)

Finally, the result follows from using (52)–(55) and (45)–(46) in (51).

Corollary 6.1. Let en
1 := A(tn) −An

h and en2 := v(tn) − vnh and assume
that

A ∈ H1(0, T ;X ∩ H1+s(Ω)3) ∩ H2(0, T ; L2(Ω))

and
v ∈ H1(0, T ; H1

♯ (Ωc) ∩ H1+s(Ωc)) ∩ H2(0, T ; L2(Ωc)),

for some 0 < s < 1. If A0,h = Πh(A0), where Πh : X ∩H1+s(Ω)3 → X h

is the Lagrange interpolant, then there exists a positive constant C,
independent of h and ∆t, such that

max
1≤n≤N

∥en
1∥2X +max

1≤n≤N
∥en2∥2H1

♯ (Ωc)
+∆t

N∑
n=1

∥en
1∥2X+∆t

N∑
n=1

∥∂̄en
1+∇∂̄en2∥20,Ωc

≤ Ch2s

{
max

0≤n≤N
∥A(tn)∥21+s,Ω+ max

1≤n≤N
∥v(tn)∥21+s,Ωc

+

∫ T

0

∥∂tA(t)∥21+s,Ωdt

+

∫ T

0

∥∂tv(t)∥21+s,Ωc
dt

}
+ C(∆t)2

{∫ T

0

∥∂ttA(t)∥20,Ωc
dt+

∫ T

0

∥∂ttu(t)∥20,Ωc
dt

}
.

ing.cienc., vol. 9, no. 17, pp. 111–145, enero-junio. 2013. 139|



A fully-discrete finite element approximation for the eddy currents problem

Proof. Let Πh : H1
♯ (Ωc) ∩ H1+s(Ωc) → Mh be the standard scalar fi-

nite element Lagrange interpolant. The result follows by using previous
theorem, the regularity assumptions on A and v, and the well-known
approximation properties of Πh and Πh (see, for instance, [32]).

Remark 6.2. Concerning this convergence result, it has to be noted that
the spatial regularity of A (and in particular the regularity of A0) is not
ensured if Ω has reentrant corners or edges, namely, if it is a non-convex
polyhedron (see [33], [34]). More important, in that case the space
H1(Ω)3 ∩H(div; Ω) turns out to be a proper closed subspace of X and
hence the nodal finite element approximate solution cannot approach an
exact solution A ∈ L2(0, T ;X ) with A /∈ L2(0, T ; H1(Ω)3 ∩ H(div; Ω)),
and convergence in X is lost.

However, the result we have proved here above ensures that the nodal
finite element approximation is convergent either if the solution is regular
(and this information could be available even for a non-convex polyhe-
dron Ω) or if Ω is a convex polyhedron. Actually, in [17, Section 5] is
underlined that if Ω is a convex polyhedron and µH ∈ Hp(Ω)3 with
0 < p ≤ 1, the vector potential A (which is characterized by (10)–(12))
belongs to H1+s(Ω)3 for some 0 < s ≤ 1. Let us also note the assumption
that Ω is convex is not a severe restriction, as in most real-life applica-
tions ∂Ω arises from a somehow arbitrary truncation of the whole space
and hence, reentrant corners and edges of Ω can be easily avoided.

A cure for the lack of convergence of nodal finite element approxima-
tion for Maxwell equations in the presence of reentrant corners and edges
has been proposed by Costabel and Dauge in [35], where they introduce
a special weight in the penalization term, thus making it possible to use
standard nodal finite elements in a numerically efficient way. Another
alternative for the eddy current problem has been reported by Bíró [36]:
edge elements are employed for the approximation of the potential A,
without requiring that the Coulomb gauge condition be satisfied. How-
ever, a complete theory assuring the effectiveness of this last approach,
even for the harmonic case, is not available.

To end this section, let us notice that we can approximate at each
time tn the physical quantities of interest: the eddy currents σE(tn)
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in the conductor Ωc and the magnetic induction field µH(tn) in the
computational domain Ω. In fact, the identities (17) and (10) suggest
the approximations

σE(tn) ≈ −σ∂̄An
h − σ∂̄∇vnh , µH(tn) ≈ curlAn

h.

Moreover, the last corollary allows us to obtain quasi-optimal error es-
timates for these approximations in some natural discrete L2-norms. In
fact, to obtain the error estimate for the first approximation, we notice
that

∥σE(tn)−
(
−σ∂̄An

h − σ∂̄∇vnh
)
∥20,Ωc

=

∥∥∥∥−σ
∂A

∂t
(tn)− σ

∂v

∂t
(tn)−

(
−σ∂̄An

h − σ∂̄∇vnh
)∥∥∥∥2

0,Ωc

≤ C
(
∥∂̄en

1 +∇∂̄en2∥20,Ωc
+ ∥τ n

1∥20,Ωc
+ ∥τn2 ∥20,Ωc

)
,

for any n = 1, 2, . . . , N . Therefore, by using (54), (55) and Corol-
lary 6.1, it follows that

∆t

N∑
n=1

∥σE(tn)−
(
−σ∂̄An

h − σ∂̄∇vnh
)
∥20,Ωc

≤ Ch2s + C(∆t)2.

Finally, to get the error estimate for the magnetic induction approxima-
tion, we notice that

µH(tn)− curlAn
h = curlA(tn)− curlAn

h = curl en
1

for n = 1, 2, . . . , N and use Corollary 6.1 to obtain

max
1≤n≤N

∥µH(tn)− curlAn
h∥20,Ω

+∆t

N∑
n=1

∥µH(tn)− curlAn
h∥20,Ω ≤ Ch2s + C(∆t)2.

7 Conclusions

We have proposed a fully-discrete approximation for the so-called “A, V−
A potential formulation” of a transient eddy current problem in a bounded
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domain, without topological restrictions on the conductor. The fully-
discrete scheme is obtained by a finite element space discretization of
standard nodal finite elements and a time discretization based on a
backward-Euler implicit scheme.

We have shown that at each step the fully-discrete scheme solves
an elliptic problem and consequently the well-posedness of the discrete
problem follows by using the well-known Lax-Milgram’s Lemma. Fur-
thermore, under usual regularity assumptions on the solution of the con-
tinuous problem, we obtain quasi-optimal error estimates, which allows
us to approximate the typical physical variables of interest of the eddy
current problem: the eddy currents in the conductor and the magnetic
induction in the computational domain.
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