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Abstract
A meshless numerical scheme is developed for solving a generic version of
the non-linear convection-diffusion-reaction equation in two-dimensional do-
mains. The Local Hermitian Interpolation (LHI) method is employed for the
spatial discretization and several strategies are implemented for the solution
of the resulting non-linear equation system, among them the Picard itera-
tion, the Newton Raphson method and a truncated version of the Homotopy
Analysis Method (HAM). The LHI method is a local collocation strategy in
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Two-dimensional meshless solution of the non-linear convection diffusion reaction equation
by the LHI method

which Radial Basis Functions (RBFs) are employed to build the interpola-
tion function. Unlike the original Kansa’s Method, the LHI is applied locally
and the boundary and governing equation differential operators are used to
obtain the interpolation function, giving a symmetric and non-singular collo-
cation matrix. Analytical and Numerical Jacobian matrices are tested for the
Newton-Raphson method and the derivatives of the governing equation with
respect to the homotopy parameter are obtained analytically. The numerical
scheme is verified by comparing the obtained results to the one-dimensional
Burgers’ and two-dimensional Richards’ analytical solutions. The same results
are obtained for all the non-linear solvers tested, but better convergence rates
are attained with the Newton Raphson method in a double iteration scheme.
Key words: Radial Basis Functions, Meshless methods, Symmetric method,
Newton Raphson, Homotopy Analysis Method.

Highlights
• Non-linear convection-diffusion equation is solved accurately by a meshless
method. • 1D Burgers’ and 2D Richards’ equations are solved by using several
nonlinear solvers. • The best convergence rate is achieved when employing the
Newton-Raphson method.

Solución bidimensional sin malla de la ecuación no li-
neal de convección-difusión-reacción mediante el mé-
todo de Interpolación Local Hermítica

Resumen
Un método sin malla es desarrollado para solucionar una versión genérica de
la ecuación no lineal de convección-difusión-reacción en dominios bidimensio-
nales. El método de Interpolación Local Hermítica (LHI) es empleado para
la discretización espacial, y diferentes estrategias son implementadas para so-
lucionar el sistema de ecuaciones no lineales resultante, entre estas iteración
de Picard, método de Newton-Raphson y el Método de Homotopía truncado
(HAM). En el método LHI las Funciones de Base Radial (RBFs) son emplea-
das para construir una función de interpolación. A diferencia del Método de
Kansa, el LHI es aplicado localmente y los operadores diferenciales de las con-
diciones de frontera y la ecuación gobernante son utilizados para construir
la función de interpolación, obteniéndose una matriz de colocación simétrica.
El método de Newton-Rapshon se implementa con matriz Jacobiana analítica
y numérica, y las derivadas de la ecuación gobernante con respecto al para-
métro de homotopía son obtenidas analíticamente. El esquema numérico es
verificado mediante la comparación de resultados con las soluciones analíticas
de las ecuaciones de Burgers en una dimensión y Richards en dos dimensio-
nes. Similares resultados son obtenidos para todos los solucionadores que se
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probaron, pero mejores ratas de convergencia son logradas con el método de
Newton-Raphson en doble iteración.

Palabras clave: Funciones de Base Radial, Métodos sin malla, Método Simé-
trico, Newton-Raphson, Método de Homotopía.

1 Introduction

The Radial Basis Functions (RBFs) have been widely used in global
and continuous interpolation of scattered data sets. Moreover, RBF
collocation by using Multiquadric (MQ), Thin Plate Spline (TPS) and
Inverse Multiquadric (IMQ) functions was considered as one of the best
numerical techniques for multidimensional interpolation, in terms of
accuracy and ease of implementation, among several schemes tested by
Franke [1]. It is fair to mention, that the TPS functions are optimal
interpolants since they minimizes the functional

∫
Rn

∂2f(x⃗)
∂xi∂xj

∂2f(x⃗)
∂xi∂xj

dx⃗ for
i = 1, · · · , n and j = 1, · · · , n. Recently, the RBFs have been
employed as the base of meshless collocation approaches for solving
partial differential equations (PDEs). The use of RBF interpolation
technique has become the foundation of the RBF meshless collocation
methods for the solution of PDEs, since the pioneer work on the
Unsymmetric method by Kansa [2]. Kansa use the MQ function to
obtain an accurate meshless solution to the advection-diffusion and
Poisson equations without employing any special treatment for the
advection term (upwinding), due to the high order of the resultant
scheme and the intrinsic relationship between governing equations and
the interpolation. This strategy involved all the scattered nodes that
cover the domain and therefore it produced a global fully populated
matrix. With the aim of improving the Kansa’s Method, Fasshauser [3]
use Hermite interpolation to construct an RBF interpolating function
which gives a non-singular symmetric collocation matrix. He concludes
that the Hermitian (Symmetric) method performs slightly better than
the Kansa (Unsymmetric) method. Jumarhon et al. [4] obtain a similar
improvement using the Symmetric method and more recently Power and
Barraco [5] attain better results by employing the Symmetric method for
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a variety of problems including convection diffusion equation. Later, La
Rocca et al. [6] implement the Symmetric method in the context of the
Method of Fundamental Solutions (MFS) to solve transient convection-
diffusion problems showing better accuracy of the scheme in the cases of
strong variable velocity field with respect to the traditional formulation.
Also, Chinchapatnam et al. [7] solve the convection-diffusion equation
using several RBFs by Symmetric and Unsymmetric method. Their
results are in agreement with those presented by Fasshauser [3].

Full-domain RBF methods exhibit high-order convergence rates of
the L2-norm of the difference between the interpolation function and a
test (analytical) function in terms of the upper bound of the distances
between points (see [8] for the MQ case), and are used by many authors
to solve variety of problems (Laplace, Poisson, Helmholtz and Parabolic
equations) showing better accuracy compared to traditional methods
[9], [10],[11],[12]. Nevertheless, the fully-populated matrix systems they
produce lead to poor numerical conditioning as the size of the data-set
increases. This problem is described by Shaback [13] as the uncertainty
relation; better conditioning is associated with worse accuracy, and worse
conditioning is associated with improved accuracy. As the system size
is increased, this problem becomes more pronounced. Many techniques
have been developed to reduce the effect of the uncertainty relation,
such as RBF-specific preconditioners [14] and adaptive selection of
data centres [15]. However, at present the only reliable method of
controlling numerical ill-conditioning and computational cost as problem
size increases is through domain decomposition (see, for example,
[16],[17],[18],[19]).

One of the first attempts in this direction is made by Lee et al.
[20] who propose the local MQ approximation in which only the nodes
inside the influence subdomain of one central node are used in the
Unsymmetric method for solving the Poisson equation. Based on the
above development Sarler and Vertnik [17] create an explicit scheme
to solve transient diffusion equation. Later on, other schemes are
implemented by modifying traditional methods using Symmetric and
Unsymmetric method. Wright and Fornberg [19] generalise the Finite
Difference Method (FDM) using RBF Hermite interpolation attaining
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high order local approximations. Moroney and Turner [21],[22] apply the
RBF interpolation in the Finite Volume Method (FVM) to reconstruct
gradients in a two- and three-dimensional non-linear diffusion problems
by the Unsymmetric method. More recently, Orsini et al. [23] solve
the diffusion convection equation by using the FVM and the Hermitian
(Symmetric) and the Unsymmetric interpolation schemes. In the pure
meshless RBF collocation strategies there are also recent developments.
Divo and Kassab [18] solve the non-isothermal flow problem by
implementing a localized Radial Basis method based on the formulation
proposed in [17] and using a sequential algorithm. Afterwards, Stevens
et al. [24] implement the Local Hermitian Interpolation Method (LHI)
to solve transient and non-linear diffusion problems. Unlike the method
proposed in [18], Stevens et al. [24] employ the Symmetric method
considering the boundary operator at the local level. Stevens et al.
[25] solve accurately the two and three dimensional convection diffusion
equation by LHI method including the PDE operator and PDE centres
in the approximation of the solution field for each local domain. The LHI
method is the scheme used in the present work focusing in the solution of
a generic version of the non-linear convection diffusion reaction equation.

Newton like methods have been widely use in the solution of non-
linear system of equations [26],[27]. However, in the case of non-linear
systems which arise from the discretization of non-linear PDEs other
strategies are often used regarding a straightforward implementation as
the Picard iteration scheme. For instance, Cui and Yue [28] develop
a FDM scheme for systems of non-linear parabolic and hyperbolic
differential equations by employing a Picard iteration strategy and
Mohan et al. [29] employ Picard iteration in the solution of a non-linear
diffusive transport equation. Despite of the ease of implementation, the
Picard iteration strategy is limited by its slow convergence in terms
of the L2-norm of the difference between the function value at present
and previous iteration and its inability of dealing with strong non-
linearities unless variable transformations are available (for example see
[30]). Nevertheless, such transformations require non-trivial operations
in terms of computational cost and cannot be applied for general forms
of the non-linear terms, i.e. each type of non-linear term needs a specific
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transformation to weaken its influence on the problem.
The Homotopy or continuation methods for the solution of non-

linear equation systems have been developed with the aim of reducing
the influence of the initial guess in the validity of the approximation
[31]. For solving non-linear PDEs, Liao [32] proposes the Homotopy
Analysis Method (HAM) with the aim of generalising the Boundary
Element Method (BEM), obtaining accurate solutions for several linear
and non-linear problems. Also, Liao [33] solves transient non-linear heat
transfer in two-dimensional domains by using a fully implicit FDM for
time discretization and the BEM for the spatial discretization in the
sense of the HAM formulation. The numerical results obtained by Liao
for a third order formulation are enough accurate in comparison to those
given by an iterative BEM scheme showing that HAM is an efficient
technique compared to Picard iterative schemes. Later on, the HAM in
conjunction to numerical methods for the PDE spatial discretization has
been applied to obtained numerical solution for a variety of non-linear
problems (see [34],[35],[36]).

In this paper a meshless numerical scheme is proposed to solve a two-
dimensional generic convection-diffusion-reaction equation by employing
the LHI method in conjunction to several strategies to solve the resulting
set of non-linear equations. Among them the Picard iteration scheme,
Newton Raphson method and a truncated version of the Homotopy
Analysis Method. The main goal of this work is to evaluate which of the
mentioned non-linear solvers performs better, in terms of computational
efficiency, when solving the non-linear convection-diffusion-reaction
equation discretized by the LHI method. In the following section the LHI
solution of the generic convection-diffusion-reaction equation is detailed
and the resulting non-linear equation system is presented. Then the
application of the non-linear solvers to the resulting LHI discretization
equation is explained starting with the Picard Iteration and following
with the Newton Raphson method and the HAM. Afterwards the
numerical results for the one-dimensional Burgers’ equation and two-
dimensional Richards’ equation are obtained and the convergence rates
of the different solvers are compared.
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2 The Local Hermitian Interpolation Method

The RBFs are characterised for its only dependence on the Euclidian
distance between test and trial points and its radial symmetric, i.e. its
value does not change when the coordinates system is rotated. Other
important features are the monotonically increasing and decreasing of
the function with the distance from the origin (test point), adjustable
softness and excellent convergence properties. The RBFs more often
used in interpolation are presented in the Table 1. Where r = ∥x− ξj∥
is the Euclidian distance between a domain node x and a trial point ξj.

Table 1: Radial Basis Functions

Name Function
Generalized Multiquadric MQ (r2 + c2)m/2

Generalized Thin Plate Spline TPS r2m−2 log r

Inverse Multiquadric IMQ (r2 + c2)β

Gaussian e−
r
c

The MQ function converges exponentially and, like TPS, is
conditionally positive define of order m > 0, since it is necessary to add
a polynomial term of order m− 1 to guarantee a non-singular resulting
matrix. Besides, MQ has a shape parameter c which allows to change
the function slope near the collocation point. For small values of c the
function turns in a cone shape, that will flattens as the shape parameter
increases. The TPS behaves well in the interpolation of multivariable
functions and does not have adjustable parameter, although it converges
linearly. The Gaussian and IMQ functions (β < 0) are positive define
and hence requires the addition of a polynomial term. In the present
work the MQ function is used considering its exponentially convergence.

A generic non-linear diffusion-convection-reaction problem is given
by the governing PDE (1) and the boundary condition (2). The
functions D,u⃗ and k are, respectively, the diffusive, convective and
reactive coefficients and S is the source term. The coefficients a and
b are functions of the position and according to its values a specific
boundary condition is applied at each boundary point. The outward
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normal vector is denoted as n⃗.

Nx(ϕ) = D(ϕ)
∂2ϕ

∂xi∂xi

+

(
∂D

∂ϕ

∂ϕ

∂xi

− ui(ϕ)

)
∂ϕ

∂xi

+ k(ϕ)ϕ− S(ϕ, x⃗) = 0

(1)

Bx(ϕ) = a(x⃗)ϕ+ b(x⃗)nj
∂ϕ

∂xj

= g(x⃗) (2)

To implement the LHI method it is necessary to cover the solution
domain with two sets of scattered points as shown in Figure 1. The
two sets of points are the nodes where the solution and the PDE will be
enforced by interpolation; hence they are called, respectively, solution
nodes and PDE centres. Each solution node has an associated stencil,
which is the subdomain where a specific interpolation function is valid.
The stencil (big circles in Figure 1) contains three kinds of points which
are the solution nodes, the PDE centres and the boundary points when
the stencil intersects the domain boundary. For more information about
the effect of the stencil nodal distribution on the performance of the
method, see [24],[25].

Figure 1: Representation of the stencils. Solution centres are denoted as •,
boundary nodes as ◦ and PDE centres as ×

In the LHI method, the dependent variable is locally approximated
by a function in terms of RBFs. The Hermitian characteristic of the
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method is a consequence of using the governing PDE and the boundary
operators to define the local approximation. For solving linear problems
the governing PDE operator can be used directly, while in the non-linear
case some linearized version of the operator has to be applied. In the
present work, an auxiliary linear operator Lx is built by using known
values of the dependent variable ϕ∗ to compute the equation coefficients
as shown in the following expression:

Lx(ϕ) = D(ϕ∗)
∂2ϕ

∂xi∂xi

+

(
∂D

∂ϕ

∂ϕ∗

∂xi

− ui(ϕ
∗)

)
∂ϕ

∂xi

+ k(ϕ∗)ϕ = S(ϕ∗, x⃗).

(3)

Then, the dependent variable ϕ can be approximated by the
expression

ϕ(k)(x⃗) =

N1∑
j=1

α
(k)
j Ψ(∥x⃗− ξ⃗j∥) +

N1+N2∑
j=N1+1

α
(k)
j Bξ[Ψ(∥x⃗− ξ⃗j∥)]

+

N1+N2+N3∑
j=N1+N2+1

α
(k)
j Lξ[Ψ(∥x⃗− ξ⃗j∥)] +

N4∑
j=1

α
(k)
j+NP

j
m−1(x⃗), (4)

where k refers to the stencil number, Ψ is the RBF and N1, N2 and N3

are, respectively, the number of solution centres, the boundary points
and the PDE centres contained in the stencil k. N4 refers to the number
of polynomial terms which depends on the dimensions of the problem
and the RBFs used.

Like in the Symmetric method [3],[25], the collocation procedure
is performed by evaluating the variable approximation (4) at the
solution nodes, the approximated boundary condition Bx(ϕ

(k)(x⃗)) at
the boundary points and the governing PDE Lx(ϕ

(k)(x⃗)) at the PDE
centres. Considering the generic operator Ξ[] the collocation procedure
can be expressed as:

Ξ[ϕ] =

 ϕ(k)(x⃗)
Bx(ϕ

(k)(x⃗))
Lx(ϕ

(k)(x⃗))
=

 ϕcentre ∀x⃗i i = 1, · · · , N1

g(x⃗i) ∀x⃗i i = N1 + 1, · · · , N2

S(ϕ∗, x⃗i) ∀x⃗i i = N1 +N2 + 1, · · · , NT
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with ϕcentre as the unknown variable value, g(x⃗i) as the known
function of the boundary condition, S(ϕ∗, x⃗i) equivalent to the known
source term function and NT = N1 + N2 + N3. Then a linear equation
system A(k)αk = d(k) is obtained where the symmetric matrix A(k) and
the column vector d(k) are defined as:

A(k) =


Ψ Bξ[Ψ] Lξ[Ψ] Pm−1

Bx[Ψ] BxBξ[Ψ] BxLξ[Ψ] Bx[Pm−1]
Lx[Ψ] LxBξ[Ψ] LxLξ[Ψ] Lx[Pm−1]
P T
m−1 Bx[P

T
m−1] Lx[P

T
m−1] 0

 (5)

d(k) =


ϕcentre

g(x⃗)
S(ϕ∗, x⃗)

0

 (6)

The matrix A(k) is non-singular as long as Ψ is chosen appropriately,
i.e. MQ, TPS, IMQ functions [6], and provided that no two data-centres
sharing linearly dependent operators are placed at the same location
[25]. According to the equations (5) and (6), the variable ϕ at a point x⃗
located inside the stencil k is given by the equation (7),

ϕ(k)(x⃗) = H(x⃗)(k)αk = H(x⃗)(k)(A−1)(k)d(k), (7)

with

H(x⃗)(k) =
(
Ψ Bξ[Ψ] Lξ[Ψ] Pm−1

)
(8)

So far a local interpolation equation is obtained for the stencil k,
considering the coefficient α(k) in terms of the variable values at the
solution centres included in the stencil. Then the original operator of
the problem Nx is applied to the dependent variable expressed as (7) and
the resulting equation is evaluated at the central solution point x⃗k, to
obtain the non-linear expression (9) which relates the unknown variable
values contained inside the stencil k.

f(ϕ∗, x⃗centre) = Nx(ϕ
k) = 0 (9)
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By applying the equation (9) to each one of the N stencils related to
the N solution centres scattered throughout the domain, a set of N non-
linear equations is obtained. It is important to notice that the solution
attained after solving the non-linear system is not the final solution since
the local interpolation is performed by using the values of the dependent
variable at the last iteration. Hence a double iteration algorithm is
required to achieve the final solution, i.e. an outer loop where the
coefficients in the interpolation matrices, which are functions of ϕ and
are contained in the PDE operator L[.], are updated, and an inner loop
where the non-linear system of equations (9) is solved. The solution of
the non-linear equation system, the double iteration algorithm and the
possibility of solving the problem without the mentioned outer iteration
are discussed in the next section. For a deeper analysis of the Hermitian
collocation method as a spatial discretization strategy, see [4],[24],[25]
where the order of convergence of the L2-norm of the error as a function
of the nodal distance is studied as well as the computational complexity
of the algorithm implemented, and [5],[24] where problems with non-
homogeneous Neumann boundary conditions are solved and the problem
of instability in the solution is addressed.

3 Solution of the non-linear convection-diffusion-reaction
equation

Four strategies for solving the non-linear equation system which arises
from the LHI discretization of the generic non-linear convection diffusion
reaction equation (1) are tested. The strategies are the Picard Iteration,
Newton Raphson method with double iteration, Newton Raphson
method with single iteration and the truncated Homotopy Analysis
method with double iteration.

The Picard iteration is the simplest strategy used here to solve the
non-linear system. In this case, the linear problem represented by
equation (3) is solved iteratively until convergence. It is important to
mention that the equation (3) is equivalent to the expression (1) after
substituting the coefficient and source term values with the ones obtained
in the previous iteration. The solution of the linear problem is performed
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as it is shown by Steven et al. [24]. The stop criterion is the magnitude of
the difference between the solution at the last and the current iteration
||ϕ⃗n+1 − ϕ⃗n||.

3.1 Newton-Raphson method

Newton-like methods has been widely used for solving non-linear
equation systems. In this case, the Newton-Raphson method is employed
with the aim of increasing the convergence rate and decreasing the
computing times respect to the Picard iteration proposed above. The
Newton Raphson method is a good option since it shows quadratic
convergence rate when the initial guess is close to the problem solution
[26] as long as the solution function is smooth. In this sense, the use
of MQ functions for the approximation is appropriate since they are
infinitely differentiable [1]. For equation systems, the solution of the
problem is given by the following equation:

ϕ⃗n = ϕ⃗n−1 − [J ]−1[F (ϕn−1)], (10)

where [J ] is the Jacobian matrix, [ϕ] is a column vector containing the
solution at the iteration indicated by the super index and [F (ϕn−1)]
is a column vector with the non-linear functions evaluated at the
last iteration. In this case, the non-linear functions are the resulting
equations of the LHI spatial discretization and are given by the
expression (9).

Both numerical and analytical Jacobian matrices are computed with
the aim of verifying the performance of the scheme using the numerical
one. The numerical Jacobian is obtained by means of a finite difference
strategy according to the equation (11), where ∆ϕ is a small perturbation
applied to the ϕj variable. The perturbation ∆ϕ is found experimentally
for each problem, i.e. several values are used and the greatest one with
which the algorithm converges to an accurate solution is selected.

Jnij =
fi(ϕ1, . . . , ϕj +∆ϕ, . . . , ϕN)− fi(ϕ1, . . . , ϕj, . . . , ϕN)

∆ϕ
(11)

|32 Ingeniería y Ciencia



Carlos A. Bustamante Chaverra, Henry Power, Whady F. Florez Escobar and Alan F. Hill
Betancourt

The analytical Jacobian Jaij is obtained by differentiating with
respect to the variable ϕj the non-linear function fi, which is the
expression (9) applied to the stencil i. Regarding the interpolation
matrix [A](k) are not in terms of ϕj but ϕ∗

j , the analytical Jacobian
Jaij is given by the expression

Jaij =
∂Nx(ϕ

(i))

∂ϕj

= D(ϕ(i))
∂

∂ϕj

(
∂2ϕ(i)

∂xm∂xm

)
+

(
2
∂D

∂ϕ

∂ϕ(i)

∂xm

− um

)
∂

∂ϕj

(
∂ϕ(i)

∂xm

)
+

(
∂D

∂ϕ

∂2ϕ(i)

∂xm∂xm

+
∂2D

∂ϕ2

∂ϕ(i)

∂xm

∂ϕ(i)

∂xm

− ∂um

∂ϕ

∂ϕ(i)

∂xm

+
∂k

∂ϕ
ϕ(i) − ∂S

∂ϕ
+ k

)(
∂ϕ(i)

∂ϕj

)
, (12)

where the Einstein summation convention is considered except for the
terms with the index in parenthesis. The derivatives of ϕ(i), its gradient
and its Laplacian with respect to the variable ϕj can be expressed as
equations (13),(14) and (15) according to (7).

∂ϕ(i)

∂ϕj

= H
(i)
k (A−1)

(i)
kj (13)

∂

∂ϕj

(
∂ϕ(i)

∂xn

)
=

∂H
(i)
k

∂xn

(A−1)
(i)
kj (14)

∂

∂ϕj

(
∂2ϕ(i)

∂xn∂xn

)
=

∂H
(i)
k

∂xn∂xn

(A−1)
(i)
kj (15)

Two algorithms have been implemented to solve the non-linear
problem by the Newton-Raphson method. The first of them is the
single iteration scheme in which the numerical Jacobian is computed
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with the interpolation matrix [A] as a function of the solution ϕ, i.e. no
linearization of the differential operators employed in the interpolation
is required. The single iteration algorithm can be described as follows.

1. Enter the initial guess ϕ0.

2. Evaluate the non-linear equation (9) including the interpolation
coefficients [α] in terms of ϕ0

3. Find the numerical Jacobian according to the expression (11) by
evaluating the non-linear set of function (9) in ϕj+∆ϕ with j being
the index of the solution nodes in the stencil. The interpolation
coefficients are calculated for each component of the Jacobian and,
in consequence, each local equation system has to be solved as many
times as the number of solution nodes included in the stencil.

4. Compute the new value of the solution ϕn+1 by using the equation
(10).

5. Check the tolerance criterion ||ϕ⃗n+1 − ϕ⃗n|| < tol. End, if it is
satisfied, or go to the step 2 with ϕ0 = ϕn+1, otherwise.

The second algorithm implemented requires a double iteration or
two loop strategy since the non-linear problem is solved with constant
interpolation coefficients [α]. Thus the problem is split in a local linear
problem that is solved in an external loop and a global non-linear
problem which is solved by the Newton-Raphson method in an internal
loop. The algorithm is given by the following sequence.

1. Enter the initial guess ϕ0.

2. External loop: Compute the interpolation coefficients for each
stencil by evaluating the interpolation matrix [A] at the current
solution value ϕn (or ϕ0 at the first iteration)

3. Internal loop: Evaluate the non-linear equation (9) in terms of
ϕn to obtain [F (ϕn)] and calculate the numerical or the analytical
Jacobian according to the expressions (11) or (12), respectively.
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4. Compute the new value of the solution ϕn+1 by using the equation
(10).

5. Check the tolerance criterion for the non-linear or internal loop
||ϕ⃗n+1 − ϕ⃗n|| < tolnl. Go to step 6, if it is satisfied, go to step 3
with ϕn = ϕn+1, otherwise.

6. Check the tolerance criterion for the linear or external loop ||ϕ⃗n+1−
ϕ⃗0|| < tol. If it is satisfied, ϕn+1 is the final solution, otherwise go
to step 2 with ϕ0 = ϕn+1.

3.2 Truncated Homotopy Analysis Method

The Homotopy Analysis Method (HAM) proposed by Liao [32] as a
generalisation of the BEM is employed here for the solution of the non-
linear convection diffusion reaction problem. The HAM solves the non-
linear problem as a combination of linear auxiliary solutions. The non-
linear solution is expressed as the homotopy Θ which is constructed
by performing a continuous deformation of the initial linear solution
ϕ0. The zeroth order deformation equation is given by expression (16),
where Lx and Nx refer, respectively, to the linear and the non-linear
differential operators as they are defined in the linearized equation (3)
and the governing PDE (1). The homotopy Θ is a function of the domain
and the parameter p ∈ [0, 1] and, according to the deformation equation,
Θ(x⃗, 0) = ϕ0 and Θ(x⃗, 1) = ϕ.

Lx(Θ) = (1− p)Lx(ϕ0) + p[Lx(Θ)−Nx(Θ)] (16)

The homotopy function Θ is considered smooth enough to assure
the continuity of its derivatives respect to the parameter p. Then it
is possible to define Θ as a expansion in Taylor series according to the
expression (17), where 0 < λ < ρ < 1 with λ being a necessary parameter
when the convergence ratio ρ is less than the unit. For brevity the
m−order derivative of Θ respect to p for p = 0 is written as Θm

0 (x⃗).

Θ(x⃗, λ) = ϕ0(x⃗) +
∞∑

m=1

(
Θm

0 (x⃗)

m!

)
λm (17)
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The iterative formulation given by the following equation is obtained
from (17) when the series is truncated at m = M , being M the order of
the formulation.

ϕn+1(x⃗) = ϕn(x⃗) +
M∑

m=1

(
Θm

0 (x⃗)

m!

)
λm (18)

Hence, the iterative solution of the non-linear problem is achieved
by computing the mth-order derivatives of the homotopy Θm

0 (m =
1, . . . ,M). Thus differentiating the zeroth order deformation equation
(16) with respect to the parameter p, an expression for the m-th order
homotopy derivative is obtained. The generalised mth-order deformation
equation can be expressed as

Lx[Θ
m
0 (x⃗)] = fm(x⃗), (19)

with the function fm given by equation (20) when m = 1 and (21) when
m > 1.

f1(x⃗) = −Nx(ϕ0) (20)

fm(x⃗) = m

[
Lx(Θ

m−1
0 )− dm−1Nx(Θ)

dpm−1

∣∣∣∣
p=0

]
(21)

The equation (19) is solved for Θm
0 as a boundary value problem with

the following boundary condition obtained from the original condition
(2) as in the formulation proposed by Liao [33].

Bx(Θ
m
0 ) = a(x⃗)Θm

0 + b(x⃗)nj
∂Θm

0

∂xj

= 0 (22)

In this work, the homotopy series is truncated at M = 2. Hence,
just the first derivative ∂Nx(Θ)

∂p
has to be calculated. The equation (23)

results from differentiating the generic expression (1) with respect to p
and evaluating it at p = 0. After solving the first order deformation
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equation for Θ1
0, the equation (23) is evaluated by reconstructing the

Θ0
0 and Θ1

0 gradients and Laplacians at the stencil centre using the LHI
discretization.

∂Nx(Θ)

∂p

∣∣∣∣
p=0

= D(Θ0
0)

∂2Θ1

∂xi∂xi

∣∣∣∣
p=0

+

(
2
∂D

∂Θ0

∂Θ0

∂xi

∣∣∣∣
p=0

− ui(Θ
0
0)

)
∂Θ1

∂xi

∣∣∣∣
p=0

+ k(Θ0
0)Θ

1
0

+

[
∂D

∂Θ0

∂2Θ0

∂xi∂xi

∣∣∣∣
p=0

+

(
∂2D

∂Θ02

∂Θ0

∂xi

∣∣∣∣
p=0

− ∂ui

∂Θ0

∣∣∣∣
p=0

)
∂Θ0

∂xi

∣∣∣∣
p=0

+
∂k

∂Θ0

∣∣∣∣
p=0

Θ0
0 −

∂S

∂Θ0

∣∣∣∣
p=0

]
Θ1

0 (23)

To implement the HAM, a double iteration algorithm is used with the
aim of updating both the local interpolation operators and the auxiliary
linear operator Lx. The HAM solution is achieved by performing the
following algorithm.

1. Enter the initial guess ϕ0.

2. External loop: Compute the interpolation coefficients for each
stencil by evaluating the interpolation matrix [A] at the current
solution value ϕn (or ϕ0 at the first iteration).

3. Internal loop: Sequentially, calculate the right hand side of the
mth-order deformation equation (19) and solve the resulting linear
boundary value problem for each m, with m = 1, . . . ,M .

4. Compute the new value of the solution ϕn+1 by using the equation
(18).

5. Check the tolerance criterion for the non-linear or internal loop
||ϕ⃗n+1 − ϕ⃗n|| < tolnl. Go to step 6, if it is satisfied, go to step 3
with ϕn = ϕn+1, otherwise.
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6. Check the tolerance criterion for the linear or external loop ||ϕ⃗n+1−
ϕ⃗0|| < tol. If it is satisfied, ϕn+1 is the final solution, otherwise go
to step 2 with ϕ0 = ϕn+1.

4 Numerical results

The non-linear LHI scheme with the algorithms presented in the last
section is verified by solving one and two-dimensional problems involving
non-linear PDEs. The four non-linear solvers are the Newton Raphson
method with single iteration and numerical Jacobian (NR1INJ), the
Newton Raphson method with double iteration and analytical Jacobian
(NR2IAJ), the Newton Raphson method with double iteration and
numerical Jacobian (NR2INJ) and the Homotopy Analysis method with
M = 2 (HAM2). All cases are solved in a PC INTEL CORE 2 DUO, 2.66
GHz, 2 GB RAM, using a FORTRAN 90 code with the IMSL libraries
for linear algebra calculations.

The first problem is the one-dimensional steady Burgers’ equation
which can be obtained from the generic form (1). In the second case, the
diffusive coefficient is an exponential function of the dependent variable
obtaining a non-linear PDE which represent the two dimensional steady
Richards’ equation. In all problems, the shape parameter value is a
function c = dh, where the average distance between the central point
and the rest of the points in a stencil is given by h and d is a factor
specified for each problem solved.

The one-dimensional steady Burgers’ equation (24) is obtained by
setting D = µ, u1 = ϕ, k = 0 and S = 0 in the generic non-linear
convection diffusion reaction equation (1).

Nx(ϕ) = µ
∂2ϕ

∂x2
− ϕ

∂ϕ

∂x
= 0 (24)

The analytical solution of the Burgers equation with Dirichlet
boundary conditions ϕ(0) = u0 and ϕ(L) = 0 is reported in [37] as
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the expression

ϕ(x) = u0η
{
1− exp

[
ηR
(x
L
− 1
)]}{

1 + exp
[
ηR
(x
L
− 1
)]}−1

,

(25)

where the parameter R = Lu0

µ
is analogous to the Reynolds number and

η is the root of the non-linear algebraic expression η−1
η+1

= exp(−ηR),
which is obtained by an independent non-linear scalar equation solver.

4.1 One-dimensional Burgers’ equation

The one-dimensional solution is obtained by means of the developed two-
dimensional code by setting Neumann boundary conditions ∂ϕ

∂xi
ni = 0

on the extreme x2−constant lines (x2 = 0.0 and x2 = 0.2). Numerical
solutions for different values of the parameter R are presented in Table
2 and Figure 2.

Table 2: One-dimensional Burgers’ equation solution by several non-linear solvers

R = Lu0/µ Nodes d RMS Error Solver Iter. time/Picard time
NR1INJ 5 3.166

1 41× 9 6.5 3.01× 10−5 NR2INJ 7 0.772
NR2IAJ 7 0.856
HAM2 7 1.178

NR1INJ 8 2.156
10 41× 9 6.0 6.86× 10−5 NR2INJ 11 0.585

NR2IAJ 11 0.560
HAM2 11 0.805

NR1INJ 8 2.165
100 61× 13 4.0 3.10× 10−3 NR2INJ 11 0.557

NR2IAJ 11 0.504
HAM2 11 0.753

NR1INJ 13 2.507
1000 81× 17 1.7 2.90× 10−2 NR2INJ 9 0.345

NR2IAJ 9 0.294
HAM2 9 0.401

According to the numerical solutions presented in the Figure 2 it is clear
that as the R value is increased the ϕ-gradient near to x1 = 1.0 is higher and,
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in consequence, obtaining adequate numerical solutions for high R depends on
the spatial accuracy of the discretization scheme. In the Table 2, the global
iterations and the ratio between the CPU time spending of the employed non-
linear solver and the Picard iteration scheme are shown.

0
0.2

0.4
0.6

0.8
1 0

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

1

 

x
2
 [m]

x
1
 [m]

 

φ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
0.2

0.4
0.6

0.8
1 0

0.05

0.1

0.15

0.2

40

60

80

100

120

 

x
2
 [m]

x
1
 [m]

 

φ
50

60

70

80

90

100

a. b.

0
0.2

0.4
0.6

0.8
1 0

0.05

0.1

0.15

0.2

200

400

600

800

1000

1200

 

x
2
 [m]

x
1
 [m]

 

φ

400

500

600

700

800

900

1000

c.

Figure 2: One-dimensional Burgers numerical solution: a. Re = 1; b. Re = 100; c.
Re = 1000

A homogeneous nodal distributions are employed and the shape parameter
factor d is set experimentally. The boundary conditions are applied in the local
approximation i.e. no global equation is evaluated at the boundary points.
The RMS error is computed by the following equation:

ϵRMS =

√
1
N

∑N
i=1 |ϕ(x⃗i)− ϕnum(x⃗i)|2

maxϕ
, (26)
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where ϕnum and ϕ are the numerical and the analytical solution, respectively,
and N the total number of nodes.

The assessment of the non-linear solvers is based on the number of global
iterations and the CPU time knowing the RMS error is the same for all
the computations since they are obtained by means of the same LHI spatial
discretization. Therefore the same solution is attained by all the solvers tested
as can be seen in Figure 3 a. for Re = 100 and Figure 4 a. for Re = 1000, in
which the absolute errors on the line x2 = 0.1 are presented.
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Figure 3: One-dimensional Burgers solution for Re = 100: a. Absolute error at line
x2 = 0.1; b. Global convergence; c. Non-linear solver convergence

The NR1INJ strategy is the most expensive in time (2.50 to 3.16 times of
the CPU time spending using Picard iteration) despite showing the highest
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global convergence rate and, in consequence, the fewest number of global
iterations for R ≤ 100. For Re = 1000 the number of global iteration
in the NR1INJ strategy is the highest due to the ill-conditioning of the
local interpolation matrices which causes an inaccurate response to the small
perturbations needed to compute the numerical Jacobian matrix. The double
iteration strategies perform better than the single iteration one considering
the CPU time spending and the stability of the method as the parameter R
is increased. As shown in Figures (3) b. and (4) b. the convergence rate of
the double iteration strategies are almost the same while in the NR1INJ case
the rate is higher for R = 100 and smaller for R = 1000. As is expected, the
Picard iteration strategy gives the lowest convergence rate.
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Figure 4: One-dimensional Burgers solution for Re = 1000: a. Absolute error at
line x2 = 0.1; b. Global convergence; c. Non-linear solver convergence
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In Figures (3) c. and (4) c. the L2-norm of the absolute error between
solutions at k and k−1 iterations of the internal loop are shown for the double
iteration strategies. The Newton Raphson strategies (NR2INJ and NR2IAJ)
present a high convergence rate similar in trend to the quadratic convergence
rate expected from Newton like methods [26]. Besides, the behaviour is the
same for both the analytical and numerical Jacobian cases showing that the
Jacobian obtained by finite difference scheme is a suitable strategy to solve
non-linear problems without the need of computing an analytical expression
for the Jacobian. The HAM2 strategy requires more iterations and CPU time
than the double iteration Newton Raphson schemes. The convergence rate of
the HAM2 can be improved by taking a higher value of M , nevertheless the
CPU time will be higher.

4.2 Two-dimensional Richards’ equation

The two-dimensional Richards’ equation for the steady state is obtained from
the general form (1) by setting D = eαϕ, u1 = 0, u2 = −αeαϕ, k = 0 and
S = 0. By doing some algebra, the Richards’ equation is reduced to the
expression

∂2ϕ

∂xi∂xi
+ α

(
∂ϕ

∂xi
+ δi2

)
∂ϕ

∂xi
= 0, (27)

which is solved by the non-linear LHI strategies implemented. As the
parameter α increases, the non-linearity becomes stronger and the gradients
near to the boundaries higher, as in shown in the numerical results obtained
for different α values (Figure 5). The two-dimensional domain is the square
(0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1) and the analytical solution is given by equation (28)
applying the Dirichlet boundary conditions (29) and (30) [38].

ϕ(x1, x2) =
1

α
ln

eαϕb +
(
1− eαϕb

)
sin(πx1)e

α
2
(1−x2)

sinh

(√
α2

4 + π2x2

)
sinh

(√
α2

4 + π2x2

)


(28)
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ϕ(x1, 1) =
1

α
ln
[
eαϕb +

(
1− eαϕb

)
sin(πx1)

]
(29)

ϕ(x1, 0) = ϕ(0, x2) = ϕ(1, x2) = ϕb (30)
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Figure 5: Two-dimensional Richards numerical solution: a. α = 1; b. α = 3; c.
α = 4

The results presented in Table 3 are obtained using a homogeneous nodal
distribution. The RMS error is the same for all the solvers employed and the
shape parameter factor d is found experimentally as in the Burgers’ equation
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case. The boundary conditions are applied at the local level. The number of
global iterations and the CPU time increase with the parameter α but, unlike
in the solution of Burgers’ equation, the RMS error are much higher and it is
not possible to attained a solution by using some solvers for α = 3 and α = 4.

Table 3: Two-dimensional Richards’ equation solution by several non-linear solvers

α Nodes d RMS Error Solver Iter. time/Picard time
NR1INJ 7 5.018

0.5 21× 21 6.0 2.59× 10−3 NR2INJ 7 0.719
NR2IAJ 7 0.761
HAM2 7 1.143

NR1INJ 9 5.307
1 21× 21 6.0 2.77× 10−3 NR2INJ 9 0.962

NR2IAJ 9 1.028
HAM2 9 1.142

NR1INJ 12 5.122
2 21× 21 5.5 2.03× 10−2 NR2INJ 12 0.973

NR2IAJ 12 0.990
HAM2 12 1.588

NR1INJ
3 41× 41 6.0 1.08× 10−1 NR2INJ 15 0.795

NR2IAJ 15 0.679
HAM2 15 4.263

NR1INJ
4 61× 61 5.5 3.18× 10−1 NR2INJ 20 0.950

NR2IAJ 20 0.770
HAM2

When α = 3 the NR1INJ strategy is unable to solve the problem whatever
the initial values are and the HAM2 spends approximately 4 times the
CPU time required by the Picard iteration strategy. In case of NR1INJ,
the ill-conditioning of the interpolation matrices causes poor accuracy in
the numerical Jacobian computation. The equivalence among the attained
solutions is verified in the Figure 6 a. which shows the absolute error at
line x2 = 0.5 for α = 3. The Figure 6 b. allows to have a qualitatively
idea of the high global convergence rates which the double iteration strategies
present with respect to the Picard iterative scheme. The Figure 6 c. shows the
slow convergence rate of the HAM strategy in the solution of the non-linear
equation system while the double iteration Newton Raphson schemes present
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a similar convergence rate such as in the solution of the Burgers’ equation
(Figure 3 c and 4 c). A small difference can be noticed between the NR2INJ
and NR2IAJ being the last (analytical Jacobian) better in terms of number
of iterations and CPU time. However the analytical Jacobian computation
increases the input data (coefficients plus their derivatives with respect to the
dependent variable) making difficult the code implementation for the solution
of a generic-convection-diffusion reaction equation compared to the numerical
Jacobian strategy. Finally, in the case of α = 4 the HAM2 solver fails to
obtained a solution and the Newton Raphson results are attained spending
less CPU time compared to the Picard iteration case.
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Figure 6: Two-dimensional Richards’ equation solution for α = 3: a. Absolute error
at line x2 = 0.5; b. Global convergence; c. Non-linear solver convergence
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After solving the one-dimensional Burgers’ and the two-dimensional
Ri-chards’ equations the better non-linear equation solver to be used in
conjunction to the LHI discretization is the double iteration Newton Raphson
schemes NR2INJ and NR2IAJ. Although the NR2IAJ performs better than
the NR2INJ, the implementation of the numerical Jacobian strategy (NR2INJ)
is straightforward compared to the NR2IAJ since no analytical effort is
required to compute the Jacobian. Hence the numerical results obtained above
prove that the finite difference is a suitable scheme to compute the Jacobian.

5 Conclusions

A meshless procedure for the solution of the generic two-dimensional
convection-diffusion-reaction equation is implemented. Several non-linear
solvers for the solution of the equation system arising from the LHI
spatial discretization are tested. The one-dimensional Burgers’ and the two
dimensional Richards’ equations are solved to assess the developed non-linear
solvers. Based on the number of global iterations and the CPU time, the best
strategies are the Newton Raphson method in a double iteration scheme with
numerical (NR2INJ) and analytical (NR2IAJ) Jacobians. The single iteration
Newton Raphson (NR1INJ) scheme is more sensitive to the ill-conditioning
of the local interpolation matrices and in consequence fails when the non-
linearity becomes strong. The convergence rate of the truncated Homotopy
Analysis Method (HAM) with M = 2 depends on the strength of the non-
linearity, making the method unsuitable for strongly non-linear problems. The
NR2INJ requires more CPU time than the NR2IAJ but its implementation
for the solution of non-linear PDE systems is simpler. Therefore from the
non-linear solvers tested the NR2INJ scheme is the most appropriate for the
solution of generic convection diffusion reaction problems.

Acknowledgment

The present work is supported by COLCIENCIAS and Empresas Públicas
de Medellín (EPM) as part of the funding provided to the project Energetic
assessment of the San Fernando plant bio-solids which has been developed by
the union of local academic institutions and the public utility company EPM,
known as the Energy Research and Innovation Centre (CIIEN).

ing.cienc., vol. 9, no. 17, pp. 21–51, enero-junio. 2013. 47|



Two-dimensional meshless solution of the non-linear convection diffusion reaction equation
by the LHI method

References

[1] R. Franke, “Scattered data interpolation: tests of some methods,” Math. Comp.,
vol. 38, pp. 181–200, 1982. 23, 32

[2] E. J. Kansa, “Multiquadrics -a scattered data approximation scheme with
applications to computational fluid dynamics-II solution to parabolic, hyperbolic
and elliptic partial differential equations,” Comput. Math. Appl., vol. 19, no. 8-9,
pp. 127–145, 1990. 23

[3] F. E. Fasshauer, “Solving partial differential equations by collocation with radial
basis functions,” Surf. Fit. Multires. Methods, pp. 131–138, 1997. 23, 24, 29

[4] B. Jumarhon, S. Amini, and K. Chen, “The Hermite collocation method using
radial basis functions,” Eng. Anal. Boundary Elem., vol. 24, no. 7-8, pp. 607–611,
2000. 23, 31

[5] H. Power and V. Barraco, “A comparison analysis between unsymmetric and
symmetric radial basis function collocation methods for the numerical solution
of partial differential equations,” Comput. Math. Appl., vol. 43, no. 3-5, pp.
551–583, 2002. 23, 31

[6] A. LaRocca, A. Hernandez, and H. Power, “Radial basis functions Hermite
collocation approach for the solution of time dependent convenction-diffusion
problems,” Eng. Anal. Boundary Elem., vol. 29, no. 4, pp. 359–370, 2005. 24,
30

[7] P. P. Chinchapatnam, K. Djidjeli, and P. B. Nair, “Unsymmetric and symmetric
meshless schemes for the unsteady convection?diffusion equation,” Comput.
Meth. Appl. Mech. Eng., vol. 195, no. 19–22, pp. 2432–2453, 2006. 24

[8] W. R. Madych and S. A. Nelson, “Multivariate Interpolation and Conditionally
Positive Definite Functions,” Math. Comput., vol. 54, no. 1, pp. 211–230, 1990.
24

[9] M. Zerroukat, H. Power, and C. S. Chen, “A numerical method for heat transfer
problems using collocation and radial basis functions,” Int. J. Numer. Methods
Eng., vol. 42, no. 7, pp. 1263–1278, 1998. 24

[10] J. Li, A. H. D. Cheng, and C. S. Chen, “A comparison of efficiency and error
convergence of multiquadric collocation method and finite element method,”
Eng. Anal. Boundary Elem., vol. 27, no. 3, pp. 251–257, 2003. 24

[11] A. H.-D. Cheng and J. J. S. P. Cabral, “Direct solution of ill-posed boundary
value problems by radial basis function collocation method,” Int. J. Numer.
Methods Eng., vol. 64, no. 1, pp. 45–64, 2005. 24

|48 Ingeniería y Ciencia



Carlos A. Bustamante Chaverra, Henry Power, Whady F. Florez Escobar and Alan F. Hill
Betancourt

[12] S. Chantasiriwan, “Cartesian grid methods using radial basis functions for
solving Poisson, Helmholtz, and diffusion?convection equations,” Eng. Anal.
Boundary Elem., vol. 28, no. 12, pp. 1417–1425, 2004. 24

[13] R. Schaback, “Multivariate interpolation and approximation by translates of
basis functions,” Approx. Theory, vol. 8, pp. 1–8, 1995. 24

[14] D. Brown, “On approximate cardinal preconditioning methods for solving PDEs
with radial basis functions,” Eng. Anal. Boundary Elem., vol. 29, pp. 343–353,
2005. 24

[15] L. Ling and R. Schaback, “On adaptive unsymmetric meshless collocation,”
Proceedings of the 2004 international conference on computational and
experimental engineering and sciences, 2004. 24

[16] C. Lee, X. Liu, and S. Fan, “Local Multicuadric approximation for solving
boundary value problems,” Comput. Mech., vol. 30, pp. 396–409, 2003. 24

[17] B. Sarler and R. Vertnik, “Meshless explicit local radial basis function collocation
methods for diffusion problems,” Comput. Math. Appl., vol. 51, pp. 1269–1282,
2006. 24, 25

[18] E. Divo and K. Kassab, “An efficient localised radial basis function collocation
method for fluid flow and conjugate heat transfer,” J. Heat Transfer, vol. 212,
pp. 99–123, 2006. 24, 25

[19] G. Wright and B. Fornberg, “Scattered node compact finite difference-type
formulas generated from radial basis functions,” J. Comput. Phys., vol. 212,
no. 1, pp. 99–123, 2006. 24

[20] C. K. Lee, X. Liu, and S. C. Fan, “Local multiquadric approximation for solving
boundary value problems,” Comput. Mech., vol. 30, no. 5-6, pp. 396–409, 2003.
24

[21] T. J. Moroney and I. W. Turner, “A finite volume method based on radial
basis functions for two-dimensional nonlinear diffusion equations,” Appl. Math.
Modell., vol. 30, no. 10, pp. 1118–1133, 2006. 25

[22] ——, “A three dimensional finite volume method based on radial basis functions
for the accurate computacional modelling of nonlinear diffusion equations,” J.
Comput. Phys., vol. 225, no. 2, pp. 1409–1426, 2007. 25

[23] P. Orsini, H. Power, and H. Morovan, “Improving Volume Element Methods by
Meshless Radial Basis Function Techniques,” Comput. model. Eng. Scien., vol.
769, no. 1, pp. 1–21, 2008. 25

ing.cienc., vol. 9, no. 17, pp. 21–51, enero-junio. 2013. 49|



Two-dimensional meshless solution of the non-linear convection diffusion reaction equation
by the LHI method

[24] D. Stevens, H. Power, and H. Morvan, “An order-N complexity meshless
algorithm for transport-type PDEs,based on local Hermitian interpolation,”
Eng. Anal. Boundary Elem., vol. 33, no. 4, pp. 425–441, 2009. 25, 28, 31,
32

[25] D. Stevens, H. Power, M. Lees, and H. Morvan, “The use of PDE centres in the
local RBF Hermitian method for 3D convective-diffusion problems,” J. Comput.
Phys., vol. 228, no. 12, pp. 4606–4624, 2009. 25, 28, 29, 30, 31

[26] B.-C. Shin, M. T. Darvishi, and C.-H. Kim, “A Comparison of the Newton-
Krylov method with high order Newton-like methods to solve nonlinear
systems,” Appl. Math. Comput., vol. 217, no. 7, pp. 3190–3198, 2010. 25, 32, 43

[27] Y. I. Kim and Y. H. Geum, “A cubic-order variant of Newton’s method for
finding multiple roots of nonlinear equations,” Comput. Math. Appl., vol. 62,
pp. 1634–1640, 2011. 25

[28] X. Cui and J.-Y. Yue, “A nonlinear iteration method for solving a two-
dimensional nonlinear coupled system of parabolic and hyperbolic equations,”
J. Comput. Appl. Math., vol. 234, no. 2, pp. 343–364, 2010. 25

[29] P. S. Mohan, P. B. Nair, and A. J. Keane, “Inexact Picard iterative scheme for
steady-state nonlinear diffusion in random heterogeneous media,” Phys. Rev. E,
vol. 79, no. 4, pp. 1–9, 2009. 25

[30] D. Stevens, H. Power, M. Lees, and H. Morvan, “A Meshless Solution Technique
for the Solution of 3D Unsaturated Zone Problems, Based on Local Hermitian
Interpolation with Radial Basis Functions,” Transp. Porous Media, vol. 79, no. 2,
pp. 149–169, 2009. 25

[31] S. J. Liao, “On the general boundary element method,” Eng. Anal. Boundary
Elem., vol. 21, no. 1, pp. 39–51, 1998. 26

[32] ——, “Boundary element method for general nonlinear differential operators,”
Eng. Anal. Boundary Elem., vol. 20, no. 2, pp. 91–99, 1997. 26, 35

[33] ——, “A direct boundary element approach for unsteady non-linear heat transfer
problems,” Eng. Anal. Boundary Elem., vol. 26, pp. 55–59, 2002. 26, 36

[34] Z. Lin and S. Liao, “The scaled boundary FEM for nonlinear problems,”
Commun. Nonlinear Sci. Numer. Simul., vol. 16, no. 1, pp. 63–75, 2011. 26

[35] S. S. Motsa, P. Sibanda, and S. Shateyi, “A new spectral-homotopy analysis
method for solving a nonlinear second order BVP,” Commun. Nonlinear Sci.
Numer. Simul., vol. 15, no. 9, pp. 2293–2302, 2010. 26

|50 Ingeniería y Ciencia



Carlos A. Bustamante Chaverra, Henry Power, Whady F. Florez Escobar and Alan F. Hill
Betancourt

[36] H. Zhu, H. Shu, and M. Ding, “Numerical solutions of partial differential
equations by discrete homotopy analysis method,” Appl. Math. Comput., vol.
216, no. 12, pp. 3592–3615, 2010. 26

[37] M. Noskov and M. D. Smooke, “An implicit compact scheme solver with
application to chemically reacting flows,” J. Comput. Phys., vol. 203, pp. 700–
730, 2005. 38

[38] F. T. Tracy, “Clean two- and three-dimensional analytical solutions of Richards’
equation for testing numerical solvers,” Water Resour. Res., vol. 42, no. 8, pp.
1–11, 2006. 43

ing.cienc., vol. 9, no. 17, pp. 21–51, enero-junio. 2013. 51|


