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Error estimates for a multidimensional meshfree Galerkin method with diffuse derivatives
and stabilization

Estimativos de error para un método de Galerkin li-
bre de mallas en múltiples dimensiones con derivadas
difusas y estabilización

Resumen
Se presenta un método libre de mallas con derivadas difusas y estabilización
por penalización. Un análisis de error para la aproximación de la solución
de una ecuación elíptica general en múltiples dimensiones, con condiciones de
frontera tipo Neumann es desarrollado. Resultados numéricos y teóricos mues-
tran que el error de aproximación y la velocidad de convergencia son mejores
que en el método de elementos difusos.

Palabras clave: Método libre de mallas, derivadas difusas, mínimos cuadra-
dos en movimiento, método de elementos difusos, estimativos de error.

1 Introduction

Numerical methods based on moving least square (MLS) approximations
and Galerkin formulations form a popular class of meshfree schemes.
However, the high computational expense in the evaluation of the shape
functions and their derivatives are drawbacks to the Galerkin approach.
For this purpose Belytschko et al. [1] and Breitkopf et al. [2] have
introduced efficient computational approaches for the evaluation of the
MLS shape functions and their derivatives.

An alternative for the computation of derivatives, the diffuse
derivative, was used by Nayroles in [3] in the DEM. In the diffuse
derivative approximation, only the derivatives of the polynomial basis
need to be included in computing the gradients of the local field variables.
Belytshko et al. [4],[5] argued that diffuse derivatives are not attractive
in Galerkin methods because they degrade the accuracy due to their lack
of integrability. However, recently, the diffuse derivative has been used in
a class of novel meshfree methods (Huerta et al [6]) for Stokes problems.
Because of their simplicity, diffuse derivatives, unlike the full derivatives,
retain the same subspace structure as their defining functions. This
special feature allowed Huerta et al [6] to circumvent the complicated
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incompressibility constraint and define a class of divergence free meshfree
approximation functions. Beyond fluid mechanics, we think this new
approach could be used to enhance the common mixed method approach.

There are very few papers on meshfree methods with a complete error
analysis [7]; among them we note [8] on the RKPM, [9] on the EFG and
[10] on the MPCM. The last paper provides a complete mathematical
analysis of the MPCM with diffuse derivatives, applied to a Poisson
problem with Dirichlet boundary conditions. However it was not until
our previous work in [11] that a paper with a complete error analysis of
a Galerkin meshfree method with diffuse derivatives (DEM) was done.

In this paper, we introduce an extension of our previous work in [11]
where we introduced a Galerkin MLS scheme developed entirely with
diffuse derivatives, that we called Stabilized Diffuse Galerkin Method
(SDGM). That previous work was completely applied to a 1D problem.
We used a novel stabilization procedure and, unlike any of the previous
work on diffuse derivative schemes for differential equations, provided a
full error analysis of the new approach as well as example computations.
The new scheme, when applied to self-adjoint elliptic problems, leaded to
fully invertible symmetric positive matrices and has rates of convergence
that improve as polynomial degree m is increased. Now in this paper we
provided the necesary modificatios to extend these results to a general
elliptic differential equation in any dimensions. As we will show in
sections 3, 4 and 5, additional consideretions have to be made.

The use of stabilization (or penalty) terms is not uncommon; they
have been used in finite element methods [12],[13] and have been proved
to be quite effective and, indeed, they are often introduced intuitively.
For instance, Beissel and Belytschko [14] introduce a penalty term to
stabilize nodal integration in the EFG. We will show that our SDGM
is accurate and its rate of convergence increases as the approximating
polynomial degree increases and the width of the support domain (R)
decreases.

This paper is organized as follows. In section 2 we introduce
the model probles. In section 3 we review some aspects of MLS
approximations. In section 4 we describe the diffuse derivatives and
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prove an approximation theorem. In section 5, we introduce the SDGM
and prove our main error estimate. Section 6 gives numerical results and
provides a comparison with the theoretical results.

2 Model Problem

For a bounded domain Ω with C1-boundary ∂Ω we consider problems of
the form:

−
n∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
(x) + c(x)u = f(x) x ∈ Ω,

n∑
i,j=1

aij(x)
∂u

∂xj

νi(x) = g(x) x ∈ ∂Ω,

(1)

where aij, c ∈ L∞(Ω), f ∈ L2(Ω), g ∈ L2(∂Ω), aij ∈ L∞(∂Ω) and ν is a
unit normal vector to ∂Ω.

Here c(x) ≥ c1 > 0 for all x ∈ Ω and A(x) = (aij(x))n×n is assumed
to be uniformly elliptic in Ω, i.e. there exists θ > 0 such that for all
x ∈ Ω and all η ∈ Rn,

n∑
i,j=1

aij(x)ηiηj ≥ θ|η|2.

After multiplying this differential equation by function v and using
Green’s formulas we find that:

B(u, v) = F (v)

with

B(u, v) =

∫
Ω

(
n∑

i,j=1

aij
∂u

∂xi

∂v

∂xj

+ cuv

)
dx and

F (v) =

∫
Ω

fvdx+

∫
∂Ω

gvds.
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And this problem has a unique solution by the Lax-Milgram theorem.

We have used Neumann or flux boundary conditions here for
simplicity; they are natural and do not need to be imposed explicitly. We
expect that Dirichlet conditions could be implemented in this framework
using, for instance, the Nitsche approach (See, perhaps, [6]). But, we
do not pursue that here in order to focus on this new diffuse derivative
approach.

We, further, expect that this approach could be extended to problems
with higher order derivatives where the payoff in computational cost from
the use of diffuse derivatives instead of full derivatives would be more
pronounced.

3 Preliminaries on moving least squares (MLS)

3.1 The moving least squares method

Let Λ = {x1, x2, ..., xN} be a set of N distinct points inside and in
the boundary of Ω ⊂ Rn which is an open and bounded set with
Lipschitz boundary ∂Ω and u1, u2, ...uN be the values of an unknown
scalar function u(x) at the points in Λ (i.e. ui = u(xi), 1 ≤ i ≤ N). Also
let R > 0 (usually called dilation parameter) and consider a positive even
weight function W (x) with compact support in B1(0) and

∫
Rn W dx ∼= 1.

Define WR(x) := W (x/R) and note WR has compact support in BR(0).
Let m << N and p(z) = {p0(z), p1(z), p2(z), ..., ps(z)}T be a basis of

the subspace of polynomials of degree less or equal than m (denoted Pm)
in Rn, placed in multi-index ordering. Note that s+1 = (n+m)!/(n!m!).
For each x ∈ Ω consider

Pu(x, y) =
s∑

k=0

ak(x)pk

(
y − x

R

)
= pT

(
y − x

R

)
a(x), (2)

where a(x) = {a0(x), a1(x), a2(x), ..., as(x)}T is chosen such that it
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minimizes the functional

J(a(x)) =
N∑
j=1

W

(
xj − x

R

)
(Pu(x, xj)− u(xj))

2

=
N∑
j=1

WR (xj − x) (Pu(x, xj)− u(xj))
2,

for a fixed x.
For each fixed x, Pu(x, y) is a polynomial in y of degree less than

or equal to m that represents the best local approximation of u(x) for
y in a small neighborhood of width 2R of x. Then, since the weight
function W usually favors the points closer to x it is natural to define
the following approximation of u(x):

uR(x) = lim
y→x

Pu(x, y) = Pu(x, x) = pT (0)a(x).

A short calculation ([15]) shows that

a(x) = M−1(x)B(x)U,

where

M(x) =
∑

xi∈Λ(x)

W

(
xi − x

R

)
p
(
xi − x

R

)
pT

(
xi − x

R

)
, U = [u1, u2, ..., uN ]T

and B(x) is a matrix whose ith column is
p ((xi − x)/R)W ((xi − x)/R) .

Thus,

Pu(x, y) =
N∑
i=1

pT

(
y − x

R

)
M−1(x)p

(
xi − x

R

)
W

(
xi − x

R

)
ui. (3)

Therefore, letting y 7→ x

u(x) ≈ uR(x) = Pu(x, x) =
N∑
i=1

pT (0)M−1(x)p
(
xi − x

R

)
W

(
xi − x

R

)
ui.

(4)
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This expression can be written in the standard interpolation form

uR(x) =
N∑
i=1

φi(x)ui, (5)

where φi(x), 1 ≤ i ≤ N, are called the shape functions and are given by

φi(x) = pT (0)M−1(x)p
(
xi − x

R

)
W

(
xi − x

R

)
, (6)

and uR(x) corresponds to the moving least squares approximation of the
function u at the point x ∈ Ω.

Note also that from the minimization of functional J(a(x)) and,
in computing the minimum via partial derivatives, the following
orthogonality relationship holds:

N∑
j=1

W

(
xj − x

R

)
(Pu(x, xj)− u(xj))q

(
xj − x

R

)
= 0 (7)

where q = q(z) is a polynomial of degree less than or equal to m.

3.2 Some error estimates for MLS approximations

We use the notation Wm,p(Ω) to denote the Sobolev space consisting of
functions with m derivatives in Lp(Ω) (1 ≤ p ≤ ∞), and Hm(Ω) for the
special case where p = 2. We use the following notation for the norms
and seminorms:

∥u∥Lp(Ω) =

∫
Ω

|u|p dx, ∥u∥L∞(Ω) = inf{σ ≥ 0, |u(x)| ≤ σ, a.e. x ∈ Ω},

∥u∥Wm,p(Ω) =
m∑
l=0

∫
Ω

∣∣∣∣dmudxm

∣∣∣∣p dx and |u|Wm,p(Ω) =

∫
Ω

∣∣∣∣dmudxm

∣∣∣∣p dx.

We will also denote ∥v∥ := ∥v∥L2(Ω).
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The moving least squares method (MLS) has been used for the
numerical solution of ordinary and partial differential equations in many
papers, but very few of these include error estimates. The papers [9] and
[8] provide such analysis and require the following properties:

(i) For each x ∈ Ω there exists at least s+ 1 distinct points from Λ in
BR

2
(x), where Lagrange interpolation is possible.

(ii) There exists c0 > 0, independent of R, such that WR(z) ≥ c0 for
all z ∈ BR

2
(0).

(iii) There exists c# such that for all x ∈ Ω, card{xj ∈ BR(x), 1 ≤ j ≤
N} < c#.

(iv) For any x ∈ Ω there exists a constant cL such that the Lagrange
basis functions associated with the set the points in property (i)
are bounded by cL in B2R(x).

(v) WR ∈ C1(BR(0)) ∩ W 1,∞(R) and there exists c1 > 0 such that
||∇WR(z)||L∞(Rn) ≤ c1/R.

Note, in particular, that c0, c#, cL and c1 are independent of R and
N . Here (iii) implies that card(Λ(x)) ≤ c#. Throughout the rest of this
paper, C will denote a positive constant that is independent of R (and
thus N as well).

Remark 3.1. In [8], Han and Meng stated that if conditions (ii) and
(iv) are satisfied, then the family of particle distributions, Λ, is called
regular, and it is enough to guarantee that there exists a constant L0

such that maxx∈Ω ∥M(x)−1∥2 ≤ L0.

With these assumptions the following theorem was established (see
proof in [9], [16], [8], [17], [15]):

Theorem 3.1. If properties (i)-(v) hold and V ∈ Hm+1(Ω), then there
exists a constant C1 that depends on c0, c#, cL and a constant C2 that
depends on c0, c#, cL, c1 such that

||V − VR|| ≤ C1R
m+1|u|Hm+1(Ω)
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and
||∇V −∇VR|| ≤ C2R

m|u|Hm+1(Ω).

4 The diffuse derivative

Computation of the derivatives of a MLS function involves differentiation
of a(x) which, in turn, involves differentiation of the M−1 and B
matrices.

On the other hand, the derivative of polynomials in Pm is trivial and
can be evaluated a priori. The concept of diffuse derivative, proposed
in [3], exploits the fact that, for a MLS function u, Pu(x, y) is a
good approximation of u = u(y) near the point x. Thus, in the one-
dimensional case:

δuR(x) = lim
y→x

∂Pu(x, y)

∂y
= lim

y→x

∂pT ((y − x)/R)

∂y
a(x) =

N∑
i=1

δφi(x)ui,

(8)
where

δφi(x) =
1

R
[p′(0)]TM−1(x)WR (xi − x)p

(
xi − x

R

)
.

With obvious modifications for the multidimensional case, using
multi-index notation. Below we indicate why u′(x) ≈ δu(x). It can
be shown (see [18]):

Proposition 4.1. Assume W (x) ∈ C0(Rn) and v(x) ∈ Cm+1(Ω) where
Ω is a bounded open set in Rn with Lipschitz boundary, and suppose
sup(φi) is convex for each i. Then if m > n

p
− 1,

||Dβv − δβv||Lp(Ω) ≤ C(m)Rm+1−|β|||v||Wm+1,p(Ω) ∀ 0 ≤ |β| ≤ m

(where Dβv and δβv represent the full and diffuse derivatives, of order
|β| of v in multi-index notation).
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Now consider a function V ∈ VR = span{φ1, φ2, ..., φN} defined as

V (x) =
N∑
i=1

φi(x)vi, (9)

where vi, 1 ≤ i ≤ N, are constants and φi(x) are the MLS shape
functions. Note that V can also been written as

V (x) = lim
y→x

PV (x, y) = lim
y→x

pT

(
y − x

R

)
a(x) = pT (0)a(x) (10)

with

a(x) =
N∑
j=1

M−1(x)p
(
xj − x

R

)
WR (xj − x) vj.

The analysis in [9] provides arguments to show that derivatives of
the a(x) functions are small, which is crucial in our theory. The next
lemma shows how the diffuse derivative is controlled by differences with
the local MLS functional PV (x, y). This lemma, somewhat of an inverse
estimate, provides the key idea behind our stabilization.

Lemma 4.1. If properties (i)-(v) hold and |α| = 1 then there exists a
constant C, independent of R, such that

||DαV − δαV ||2 ≤ C

R2

∫
Ω

∑
xk∈Λ(x)

|PV (x, xk)− vk|2dx.

where Λ(x) = {xj ∈ Λ : x ∈ BR(xj) ∩ Ω}.

Proof. Our proof follows very closely the proof of lemma 2.2 in [9] and
Lemma 3 in [11].

Let α = (0, · · · , 0, αj, 0 · · · , 0) ∈ Rn, αj = 1. So

Dαv =
∂v

∂xj

and δαv =
δv

δxj

= δxj
v
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Let also, ej = jth unit vector in Rn.
A short calculation shows that

DαV (x)− δαV (x)

= lim
y→x

[
lim
h→0

1

h

s∑
k=0

(
ak(x+ hej)pk

(
y − x

R

)
− ak(x)pk

(
y + hej − x

R

))]
.

So,

DαV (x)−δαV (x) = lim
y→x

[
lim
h→0

1

h
(PV (x+ hej, y + hej)− PV (x, y + hej))

]
.

Define Q(x, y) := (PV (x+ hej, y)− PV (x, y)).

Dαv(x)− δαv(x) = lim
y→x

[
lim
h→0

Q(x, y + hej)

h

]
. (11)

Notice that for each x,Q(x, y) is a polynomial in y of degree less or
equal than m. Also, if z1, z2, ..., zs+1 are the points in BR/2(x) given by
property (i), then using property (ii),

∑
zk∈BR/2(x)

|Q(x, zk)|2 ≤
1

c0

N∑
l=1

W

(
xl − x

R

)
|PV (x+ hej, xl)− PV (x, xl)|2

=
1

c0

N∑
l=1

W

(
xl − x

R

)
Q(x, xl)[PV (x+ hej, xl)− vl]

+
1

c0

N∑
l=1

W

(
xl − x

R

)
Q(x, xl)[vl − PV (x, xl)].

By the orthogonality property (7) the second term on the right hand
side above is zero. Thus

∑
zk∈BR/2(x)

|Q(x, zk)|2 ≤
1

c0

N∑
l=1

W

(
xl − x

R

)
Q(x, xl)[PV (x+ hej, xl)− vl].
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By property (iv) and the Meanvalue theorem, we can guarantee that,
for h small enough, ∃ξl such that

W

(
xl − x

R

)
−W

(
xl − x− hej

R

)
=

∂W

∂xj

(ξl)h

so,

∑
zk∈BR/2(x)

|Q(x, zk)|2 ≤ 1

c0

N∑
l=1

W

(
xl − x− hej

R

)
Q(x, xl)[PV (x+ hej , xl)− vl]

+
h

c0

N∑
l=1

∂W

∂xj
(ξl)Q(x, xl)[PV (x+ hej , xl)− vl],

and using again the orthogonality condition (in x + hej) and property
(v), we have∑

zk∈BR/2(x)

|Q(x, zk)|2 ≤
h

c0

N∑
l=1

∂W

∂xj

(ξl)Q(x, xl)[PV (x+ hej, xl)− vl]

≤ c1h

c0R

∑
xl∈Λ1+h(x)

|Q(x, xl)||PV (x+ hej, xl)− vl|

(12)

where Λ1+h(x) = {xk ∈ Λ : |x−xk| ≤ (1+h)R}. On the other hand,
we can use the Lagrange’s polynomial basis functions l0, l1, . . . , ls, each
of degree m at the s+ 1 distinct points in BR/2(x) to write

Q(x,w) =
∑

zi∈BR/2(x)

Q(x, zi)li(w). (13)

So, using the Cauchy-Schwarz inequality,

∑
xk∈Λ1+h(x)

|Q(x, xk)|2 ≤
∑

xk∈Λ1+h(x)

 ∑
zi∈BR/2(x)

|Q(x, zi)||li(xk)|

2

≤

 ∑
zi∈BR/2(x)

|Q(x, zi)|2
 ∑

xk∈Λ1+h(x)

∑
zi∈BR/2(x)

|li(xk)|2

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≤ C(cL, c#,m)
∑

zi∈BR/2(x)

|Q(x, zi)|2.

Using this result and Cauchy-Schwarz inequality in equation (12) we
have

∑
zk∈BR/2(x)

|Q(x, zk)|2 ≤
Ch

R

 ∑
zk∈BR/2(x)

|Q(x, zk)|2
1/2

·

 ∑
xk∈Λ1+h(x)

|PV (x+ hej, xk)− vk|2
1/2

and thus,

∑
zk∈BR/2(x)

|Q(x, zk)|2 ≤
Ch2

R2

∑
xk∈Λ1+h(x)

|PV (x+ hej, xk)− vk|2. (14)

Using the equation (14), choosing z = y + hej and property (iv) in
(13) we obtain, for all y ∈ BR(x) ∩ Ω,∣∣∣∣Q(x, y + hej)

h

∣∣∣∣2 ≤ C
∑

zk∈BR/2(x)

∣∣∣∣Q(x, zk)

h

∣∣∣∣2
≤ C

R2

∑
xk∈Λ1+h(x)

|PV (x+ hej, xk)− vk|2.

Finally, using this result in the equation (11) yields:

||Dαv(x)− δαv(x)||2 ≤ C

R2

∫
Ω

∑
xk∈Λ(x)

|PV (x, xk)− vk|2dx. �

Remark 4.1. In the one dimensional case we presented in [15] and
[11], we had that if V = uR (i.e. vi = ui = u(xi)) then Pu(x, ·) is
an interpolating polynomial of the function u at least on m+ 1 distinct
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points in Λ(x); however, in the multidimensional case we are not aware of
a similar result or whether this is true or not. Therefore, let us introduce
for any x ∈ Ω the polynomial Iu(x, ·) in Pm that interpolates u at the
points that satisfy the property (i). We can prove the following theorem
(see [9] or [15]):

Theorem 4.1. Let x ∈ Ω; if properties (i)-(iv) hold, then there exists a
constant C depending only on c0, c#, cL such that for all y ∈ BR(x) ∩ Ω

|u(y)− Pu(x, y)| ≤ C∥u− Iu(x, ·)∥L∞(BR(x)∩Ω). (15)

Therefore, in particular taking y = x we have

|u(y)− uR(x)| ≤ C∥u− Iu(x, ·)∥L∞(BR(x)∩Ω). (16)

5 A Galerkin Approximation Scheme

The stabilization of our Galerkin scheme will involve

P(U, V ) =

∫
Ω

 ∑
xl∈Λ(x)

(PU(x, xl)− ul)(PV (x, xl)− vl)

 dx.

where U and V are MLS functions in VR as defined in (9). So, by lemma
4.1 we have

||DαV − δαV ||2 ≤ C

R2
P(V, V ). (17)

Let us also notice that from theorem 4.1 we have

|Pu(x, xl)− ul| = |Pu(x, xl)− u(xl)|
≤ C∥u− Iu(x, ·)∥L∞(Ω).

Thus, by standard arguments from polynomial interpolation

|Pu(x, xl)− ul| ≤ CRm+1∥um+1∥L∞(Ω).

|66 Ingeniería y Ciencia



Mauricio Osorio and Donald French

Hence,

P(uR, uR) =

∫
Ω

 ∑
xl∈Λ(x)

(Pu(x, xl)− u(xl))
2

 dx

≤ C

∫
Ω

∑
xl∈Λ(x)

R2(m+1)∥um+1∥2L∞(Ω)dx

≤ CR2(m+1)∥um+1∥2L∞(Ω). (18)

For MLS functions u and w, the bilinear form for our Galerkin scheme
is

B(u,w) =

∫
Ω

(
n∑

i,j=1

aij(x)
δu

δxj

δw

δxi

+ c(x)uv

)
dx := (Aδu, δw) + (cu, w)

(19)
where

δu =

[
δu

δx1

,
δu

δx2

, · · · , δu

δxn

]T
and A is a matrix whose ij entry is aij

So, our stabilized diffuse Galerkin method (SDGM) is as follows:

SDGM:

{
Find U ∈ VR so that
B(U, β) +R−2γP(U, β) = (f, β) ∀ β ∈ VR.

Here, we require γ > 0 and guidelines for it will be provided in the next
theorem.

Remark 5.1. Note that SDGM is equivalent to the following Ritz-
Galerkin formulation: Find U ∈ VR so that,

J(U) = min
V ∈VR

J(V ) = min
V ∈VR

[B(V, V )− 2(f, V ) +R−2γP(V, V )],
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from which we can identify R−2γP(V, V ), as a penalty or stabilization
term.

We can now state and prove our main theorem:

Theorem 5.1. Let u ∈ Cm+1(Ω) be the exact solution of the equation
(1), uR be its MLS approximation and U be the solution given by the
numerical scheme SDGM, then if γ = m/2 + 1, there exists a constant
C independent of R such that,

∥δu−DU∥+ ∥u− U∥ ≤ CRm/2, (20)

where

Du =

[
∂u

∂x1

,
∂u

∂x2

, · · · , ∂u

∂xn

]T
Proof. The proof of this theorem is similar to the proof of theorem 1 in
[11].

First, for β ∈ VR

B(uR, β) = (ADu, δβ) + (cu, β) + (A(δu−Du), δβ)

= (f, β) + (ADu, δβ −Dβ) + (A(δuR −Du), δβ), (21)

Now, let e = uR − U , then by the equations SDGM and (21) we
have,

B(e, β)−R−2γP(U, β) = (ADu, δβ −Dβ) + (A(δuR −Du), δβ)

+ (c(uR − u), β). (22)

Now, choosing β = e we find

B(e, e) +R−2γP(U,U) = (ADu, δe−De) + (A(δuR −Du), δe)

+ (c(uR − u), e) +R−2γP(U, uR).

We can use the ellipticity condition to show

B(e, e) ≥ θ∥δe∥2 + c1∥e∥2.
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Therefore

θ∥δe∥2 + c1∥e∥2 +R−2γP(U,U)

≤ (ADu, δuR −DuR) + (A(δuR −Du), δe)

+ (c(uR − u), e)− (ADu, δU −DU) +R−2γP(U, uR).
(23)

We can now use the Cauchy-Schwartz and arithmetic-geometric mean
inequalities together with theorem 3.1 and proposition 4.1 to find

θ||δe||+ c1||e||+R−2γP(U,U)

≤
n∑

i,j=1

||aij||L∞(Ω)

(∫
Ω

|Du|(|δuR −Du|+ |Du−DuR|)dx

+

∫
Ω

|δuR −Du||δe|dx+

∫
Ω

|Du||δU −DU |dx
)

+ ||c||L∞(Ω)

∫
Ω

|uR − u||e|dx+R−2γ(P(U,U))1/2(P(uR, uR))
1/2

≤ C (∥Du∥∥δuR −Du∥+ ∥Du∥∥Du−DuR∥+ ∥δuR −Du∥∥δe∥
+∥Du∥∥δU −DU∥) + C∥uR − u∥∥e∥
+R−2γ(P(U,U))1/2(P(uR, uR))

1/2

≤ CRm + C∥δe∥Rm + C∥δU −DU∥+ C∥e∥Rm+1

+R−2γ(P(U,U))1/2(P(uR, uR))
1/2

≤ CRm +
1

2

(
C

ϵ
R2m + ϵ∥δe∥2

)
+

k

2

(
C

ϵ
R2(m+1) + ϵ∥e∥2

)
+

1

2

(
C

ϵ
R2(γ−1) +

ϵ

C
R−2(γ−1)∥δU − U ′∥2

)
+

ϵ

2
R−2γP(U,U)

+
1

2ϵ
R−2γP(uR, uR).

Now, by (18) and (17) we have(
θ − ϵ

2

)
∥δe∥2 + c1

(
1− ϵ

2

)
∥e∥2 + (1− ϵ)R−2γP(M(U),M(U))
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≤ C

[
Rm +

1

2ϵ
R2m +

k

2ϵ
R2(m+1) +

1

2ϵ
R2(γ−1) +

1

2ϵ
R2(m−γ+1)

]
.

Choosing ϵ = 1/2, we conclude

∥δe∥2+∥e∥2 +R−2γP(M(U),M(U))

≤ C
(
Rm +R2m +R2(m+1)

)
+ C

(
R2(γ−1) +R2(m−γ+1)

)
. (24)

Then, taking γ = m/2 + 1 proves

∥δe∥2 + ∥e∥2 +R−(m+2)P(U,U) ≤ CRm, (25)

and since P(U,U) ≥ 0 we find that

(∥δU − δuR∥2 + ∥U − uR∥2)1/2 ≤ CRm.

Combining this with proposition (4.1) we finish the proof.

6 Numerical results

In this section we present some numerical results on the convergence
orders of the SDGM. The numerical results confirm the theoretical
predictions.

Solutions are reported for the following numerical methods:

1. Diffuse element method (DEM).

2. Element free Galerkin method (EFG).

3. The stabilized diffuse Galerkin method (SDGM).

In all cases a background mesh of subintervals on cells was used for
numerical integration. Within each integration cell, there was a set of
Gauss-Legendre quadrature points. We kept the number of cells large
enough so that numerical integration did not affect the convergence rates.
The weight function was chosen to be the cubic spline:

W (x) = 2


4(|x| − 1)x2 + 2/3 |x| ≤ 0.5

4(|x| − 1)3/3 0.5 ≤ |x| ≤ 1

0 1 ≤ |x|.
(26)
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We applied the numerical methods to the following boundary value
problem: {

−∆u+ π2u = 3π2cos(πx)cos(πy) (x, y) ∈ Ω,
∂u
∂n

= 0 (x, y) ∈ ∂Ω,
(27)

where Ω = [0, 1]×[0, 1] and n is the unit normal vector to the boundary of
Ω. The exact solution of the equation (27) is u(x, y) = cos(πx)cos(πx).

For this example, we divide Ω into 11 × 11, 21 × 21 and 31 × 31
uniformly distributed points, and the dilation parameter (R/h) is kept
constant for each m, so that the hypotheses from section 3 are satisfied.
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Figure 1: Partial derivative with respect to x, approximation error in L2 norm.
The continuous line with diamonds is for the SDGM and the discontinuous line for
the DEM.
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Figures 1 and 2 show numerical results comparing EFG, DEM
and SDGM for different dimensions (m) of the polynomial basis
used in the MLS approximation. We report errors for both the
numerical approximation of the solution of the equation (27) and the
approximation of its first derivative with respect to x using diffuse
derivatives, in the L2 norm. It is important to notice that similar results
can be obtained for the full and diffuse derivatives with respect to y, and
therefore for the gradient and diffuse gradient of u.
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Figure 2: Numerical solution error in L2 norm. The continuous line with diamonds
is for the SDGM, the dashed line with squares for the DEM and the pointed line
with circles for the EFG.

The convergence rates are summarized in tables 1 and 2. It can be
seen that the numerical results suggest that for the SDGM

∥u− U∥ ≤ CR(m+2)/2 and ∥δxu− δxU∥ ≤ CR(m+1)/2, (28)

while we only get about ∥u − U∥ ≤ CR1.5 and |δxu − δU∥ ≤ CR0.5 for
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the DEM.

Table 1: Convergence Rates for Solution Approximation in L2

Method m = 1 m = 2 m = 3

DEM 1.46 1.56 1.49
SDGM 1.63 1.92 2.49
EFG 2.49 3.15 4.10

Table 2: Convergence Rates for Diffuse Derivative Approximation (with respect to
x) in L2

Method m = 1 m = 2 m = 3

DEM 1.09 1.08 1.03
SDGM 0.95 1.54 1.88

The numerical convergence rates are slightly better than our
theoretical results on ||δxu − δxU || and ||u − U ||, as is often true. We
also observe that, in general, the errors obtained using SDGM are smaller
than those using the standard DEM. The convergence rates for the DEM
in the L2 norm are about 1.5 independent of the value of m and 1 for
its derivative (similar observations were made in [19] and [11], although
a small convergence rate for the DEM was obtained in the 1D case).
Our SDGM performs better as m increases. Also, as expected the
standard EFG gives the best convergence rates, but unfortunately it
is very expensive from the computational point of view, which makes
diffuse derivatives more attractive. It is important to notice that all
these results agree with those found for the 1D case in [11].

Remark 6.1. A proof of the enhanced L2 convergence observed in the
equation (28) remains an open question. The fact that our penalty term
is not exactly zero at the true solution and integration by parts with
diffuse derivatives is not possible, seem to make the standard duality
argument impossible.
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7 Conclusions

A modification to the traditional DEM, the stabilized diffuse Galerkin
method (SDGM) has been proposed, in which a stabilization term is
introduced to improve the overall accuracy and stability. The new
scheme, like DEM, does not require the evaluation of full derivatives.
This method is shown to give better results than DEM and converges
to the true solution as the dilation parameter (R) goes to zero, or the
order of the polynomial basis is increased, as demonstrated numerically
and proved theoretically. The procedure described in this paper can be
applied to more general multidimensional problems (see [15]).

We see SDGM as enhancing the viability of the diffuse derivative
approach. Again, as suggested in Huerta et al [6], we think the versatility
of the diffuse derivative could be helpful in fluid flows or mixed method
computations.
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