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Abstract
The current trend towards miniaturization in the microelectronics industry
has pushed for the development of theories intended to explain the behav-
ior of materials at small scales. In the particular case of metals, a class of
available non–classical continuum mechanics theories has been recently em-
ployed in order to explain the wide range of observed behavior at the micron
scale. The practical use of the proposed theories remains limited due to issues
in its numerical implementation. First, in displacement–based finite element
formulations the need appears for higher orders of continuity in the interpo-
lation shape functions in order to maintain the convergence rate upon mesh
refinement. This limitation places strong restrictions in the geometries of the
available elements. Second, the available inelastic constitutive models for small
scale applications have been cast into deformation theory formulations limit-
ing the set of problems to those exhibiting proportional loading only. In this
article two contributions are made for the particular case of a Cosserat couple
stress continuum. First it describes a numerical scheme based on a penalty
function/reduced integration approach that allows for the proper treatment of
the higher order terms present in Cosserat like theories. This scheme results in
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a new finite element that can be directly implemented into commercial finite
element codes. Second, a flow theory of plasticity incorporating size effects is
proposed for the case of rate independent materials overcoming the limitations
in the deformation theory formulations. The constitutive model and its cor-
responding time–integration algorithm are coupled to the new proposed finite
element and implemented in the form of a user element subroutine into the
commercial code ABAQUS. The validity of the approach is shown via numer-
ical simulations of the microbending experiment on thin Nickel foils reported
in the literature.

Key words: non–classical continuum theories, Cosserat continuum medium

theory, couple stress theory, small scale inelastic response, finite element analy-

sis, constitutive modeling, integration algorithms.

Resumen
La tendencia actual hacia la miniaturización en la industria microelectrónica
ha promulgado el desarrollo de teoŕıas orientadas a explicar el comportamiento
de materiales usados en pequeña escala. En el caso particular de los metales,
recientemente se ha usado una clase de teoŕıas no clásicas de la mecánica de
los medios continuos con el fin de explicar una amplia gama de observaciones
a escala micrométrica. Sin embargo el uso práctico de las teoŕıas propues-
tas permanece limitado debido a dificultades a la hora de su implementación
numérica. En primer lugar, cuando éstas van a ser implementadas en formula-
ciones por elementos finitos basadas en desplazamientos se genera la necesidad
de altos órdenes de continuidad en las funciones de interpolación con el fin de
mantener las propiedades de convergencia en el algoritmo. Estas limitaciones
generan fuertes restricciones en las geometŕıas de los elementos disponibles.
De otro lado, los modelos inelásticos disponibles para aplicaciones a pequeña
escala han sido formulados como teoŕıas de deformación (total) limitando su
aplicabilidad a problemas bajo condiciones proporcionales de carga. En el
presente art́ıculo se hacen dos contribuciones para el caso de un continuo de
Cosserat con tensiones de par. Primero se describe un esquema numérico basa-
do en una estrategia de funciones de penalización combinadas con integración
reducida para abordar apropiadamente el problema de los términos de orden
superior presentes en la teoŕıa de los Cosserat. Este esquema da como resulta-
do un nuevo elemento finito que puede ser directamente acoplado a programas
de distribución comercial que acepten subrutinas de usuario. En segundo lugar
se propone una teoŕıa de flujo de plasticidad incorporando efectos de tamaño
superando algunos de los obstáculos de las teoŕıas por deformación. El modelo
constitutivo resultante y su correspondiente esquema de integración en el tiem-
po son acoplados al nuevo elemento formulado e implementados en subrutinas
de usuario de ABAQUS. La validez de la estrategia es demostrada mediante
simulaciones del ensayo de microflexión en láminas de ńıquel reportados en la
literatura.
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Palabras claves: teoŕıas no clásicas del continuo, teoŕıa del continuo de Cos-
serat, teoŕıa de tensiones de par, respuesta inelástica a pequeña escala, análisis
por elementos finitos, modelación constitutiva, algoritmo de integración.

1 Introduction

1.1 The size effects problem associated to non-uniform inelastic
fields

Recent developments in the microelectronics industry and other related prob-
lems (like the emerging nanotechnology) have pushed for a strong interest
in continuum mechanics theories applicable at the small scale level, (micron
or even sub-micron scale). Of particular interest is the so-called size effects
problem that has been experimentally observed in many metals and its al-
loys and where a resistance parameter seems to increase in the direction of
decreasing specimen size. Under elastic conditions this behavior appears to
be important only when the specimen size becomes comparable to typical
inter-atomic distances. At such small volumes the assumption of continuity
is of course inaccurate and discrete models must be used.

In the case of metals, under non-uniform plastic deformation fields a size
dependent behavior has been observed at scales many times larger than typical
dimensions of the Representative Volume Element (RVE) of the material, [1, 2,
3, 4, 5, 6, 7, 8]. Clearly, at such scale the assumption of continuity is still valid
provided that the used continuum mechanics model incorporates material
length scale parameters. As a result, when some characteristic dimension
of the non-uniform plastic deformation field approaches the material length
scale, size effects are triggered. The excess of strength identified at the small
scale increases in the direction of decreasing specimen size. This behavior
has been attributed to an accumulation of an additional dislocation density
needed to accommodate the gradients of plastic strain. The proposed models
to explain this type of behavior have been termed Strain Gradient Plasticity
(SGP) or Geometrically Necessary Dislocations Based Plasticity (GNDP),
[9, 10, 11].
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1.2 The lack of a length scale

Classical continuum mechanics theories are strongly based on the Cauchy
stress principle or Cauchy first postulate and therefore have no internal length
scale. They implicitly assume that the wavelength of the imposed deformation
field is many times larger than the RVE of the material and in the limiting
process that yields to the notion of the classical tractions vector, the ratio
between the equivalent surface moments to the surface area vanishes. This
means that there is a direct equivalence between the mathematical concept
of limit and the physical problem; continuity is therefore assumed accurate
regardless of the scale of the problem and gradients of strain are rapidly
smoothed out. This lack of internal length scale in classical continuum me-
chanics theories render the resulting models short of being able to predict
the wide range of observed size dependent phenomena related to inelastic
behavior.

There are several SGP theories available in the literature, [1, 9, 10, 11, 12,
13, 14, 15] [16], [17], [18] and [19]. In all of them a length scale material pa-
rameter (ℓ) appears as an additional mechanical property that enhances the
resistance with the gradients of strain. Once the gradients of strain are explic-
itly considered, additional kinematic variables and stress definitions appear
into the formulation.

In the class of theories promulgated in [1], [9] and [15] the gradients of
strain appear directly into the governing differential equations giving rise to
additional boundary conditions. Similarly, in the models proposed in [12],
[13] and [14] the gradients of strain appear indirectly into the yield surface
definition, giving rise to a differential equation in the consistency parameter
and satisfying the consistency condition only in a weak sense.

1.3 Difficulties in the numerical treatment of strain gradient plas-
ticity theories

Several questions immediately arise if plastic size effects are to be considered:
for instance it is not clear how to incorporate gradients of strain into the exist-
ing continuum mechanics theories, how to extend the resulting formulations
to the inelastic regime and how to extend the available numerical schemes
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to the new class of theories. The present article addresses numerical issues
related to the last two aspects, namely the proper implementation of strain
gradient theories into a finite element scheme and the extension of the model
to the inelastic regime.

The explicit consideration of gradients of strain into the continuum which
are now needed if one wants to predict size dependent response, immediately
demands for higher orders of continuity in the interpolation shape functions
used in a finite element implementation. This numerical problem has been
generally neglected or addressed empirically based on the fact that experi-
mentally observed results have been correctly predicted. Depending on the
type of theory to implement, C1 (first order continuous) or even superior ele-
ments are needed. Generally speaking C1 or higher order continuous elements
are computationally expensive, cumbersome to implement into existing finite
element platforms and generally not readily available. Alternatively, one can
use C0 continuous elements and impose the new kinematic variables as kine-
matic constraints satisfied in a weak sense. This general alternative for the
class of gradient theories has not been thoroughly discussed in the literature
and the problem has been solved rather empirically.

In the present article we address the problem of how to properly imple-
ment a strain gradient theory for the special case of a Cosserat Couple Stress
Based Strain Gradient Plasticity Framework, (CS–SGP). We discuss differ-
ent alternatives for the numerical implementation of the theory giving rise to
either a mixed or a hybrid scheme. On the other hand we also present an ex-
tension of an existing deformation theory plasticity model with size effects to
a flow theory formulation. This overcomes the limitation existing in deforma-
tion theories where only proportional loading problems can be studied. The
resulting Cosserat continuum mechanics framework is therefore coupled with
a rate independent inelastic constitutive model expressed in flow theory form.
The Cosserat framework and constitutive model are cast in the form of a user
element subroutine UEL and a material user subroutine UMAT which guar-
antees portability of the algorithm. The algorithm is tested simulating the
microbending experiment reported in [7] to verify the model capability to in-
corporate plastic size effects. The total computational framework is included
in the appendix in the form of a resulting Newton-Raphson iteration.
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2 The general and reduced cosserat couple stress theory

The description that follows refers to the general solid occupying a volume Ω
and bounded by a surface ∂Ω with outward normal vector n̂, figure 1. We
will refer to volume differentials as dΩ and surface area differentials as dΓ and
will work within a small displacements and small strains context.

Ω

Ω
n

6

Figure 1: schematic of the assumed general solid

In the couple stress theory described in [20] a differential material element
admits not only normal and shear stresses but also couple stress components.
This could be interpreted as an extension of the first postulate of Cauchy
which immediately leads to a more general definition of the tractions vector.
From the kinematics perspective two models were originally formulated by
the Cosserats, [20]; both models are presented in the discussion that follows.

2.1 Equilibrium equations, kinematic relations and generalized
Hooke’s law

For linear elastic behavior the stress components are functions of the strains
and the couple stresses are functions of the curvatures. The equations of equi-
librium and traction boundary conditions are given in (1) where σij represents
the symmetric component of the stress tensor, τij the asymmetric component
of the stress tensor, mij the couple stress tensor and ti and qi represent force
and moment tractions respectively
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σji,j + τji,j = 0

τjk +
1

2
eijkmpi,p = 0

(1a)

ti = (σij + τij)nj

qi = mijnj .
(1b)

In (1), eijk represents the permutation tensor and nj the vector normal to the
bounding surface dΓ. From the kinematics point of view two distinct theories
are identified in the work of the Cosserats as described by [21], [22] and [23].
First, there is formulated a General Cosserat Couple Stress Theory where
within a material point there is also assumed to be embedded a micro–volume.
In principle this micro–volume could admit several micro-deformation modes,
see [22], [24], [25] and [26]. In the particular case of the Cosserat general
theory a material point can sustain, in addition to the usual rotation θi which
is kinematically constrained to the displacement vector ui, a micro–rotation
ωi present inside the micro–volume. The material point rotation θi and the
micro–rotation ωi are related through a relative rotation tensor αij . The
kinematic relations corresponding to the general theory are described in (2)
where εij represents the small strains tensor, χij represents the curvatures
(or gradients of the material point rotation).

εij =
1

2
(ui,j + uj,i)

θi =
1

2
eijkuk,j

αij = eijkωk − eijkθk

χij = θi,j .

(2)

The generalized Hooke’s law for the Cosserat Couple Stress Solid are pre-
sented in (3) where Cijkl, D̄ijkl and Dijkl are constitutive tensors relating the
symmetric part of the stress tensor to the strains, the asymmetric part of
the stress tensor to the relative rotations and the couple stress tensor to the
curvatures via a material length scale parameter ℓ respectively.
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Tratamiento numérico de una teoŕıa de plasticidad por gradiente de deformación basada

en un modelo de cosserat

σij = Cijklεkl

τij = D̄ijklαkl

ℓ−1mij = Dijklℓχkl .

(3)

Secondly, there is a reduced couple stress theory which corresponds to
the particular choice of ωk = θk. In this case the relative rotation tensor αij

vanishes and the general couple stress theory reduces to the more restrictive
reduced couple stress theory. In this reduced theory the kinematic quantities
are now the displacement ui and the associated material rotation θi tied to
the displacements by the kinematic constraint given in (2). In this case there
is still an asymmetric part of the stress tensor which makes a null work upon
deformation. Figure 2 shows the particular case of reduced couple stress
theory where the micro–volume is assumed rigid or without relative rotations.

2.2 Total potential energy functional and alternatives for finite
element implementation

In the present work interest is on the Cosserat reduced couple stress theory.
However it is convenient to consider the reduced model as a particulariza-
tion of the more general theory. Following a variational approach the re-
duced model can be identified as a constrained version of the general theory.
This scheme allows us to identify different versions of the principle of virtual
displacements while keeping a physical meaning. In this way we arrive at
different variational equations starting from an unrestricted variational prob-
lem and ending with the corresponding restricted problem. The restricted
problem can be treated either via a Lagrange multipliers approach or with a
penalty function formulation.

Consider the total potential energy functional corresponding to the Cosserat
general model, equation 4a. For this theory the independent kinematic vari-
ables correspond to the displacements ui and the micro–rotation ωi.
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Figure 2: kinematics of the reduced theory couple stress solid
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Π(ui, ωj) =
1

2

∫

Ω

Cijklεkl(ui)εij(ui)dΩ +
1

2

∫

Ω

Dijklχij(ωi)χkl(ωi)dΩ+

1

2

∫

Ω

D̄ijklαij(ui, ωi)αkl(ui, ωi)dΩ−

∫

∂Ω

tiuidΓ−

∫

∂Ω

qiωidΓ .

(4a)

In the case of the reduced theory the independent kinematic variables
are only the displacements. The curvatures are then specified as second order
gradients of the displacements. The total potential energy functional becomes:

Π̄(ui) =
1

2

∫

Ω

Cijklεkl(ui)εij(ui)dΩ +
1

2

∫

Ω

Dijklχij(ui)χkl(ui)dΩ−

∫

∂Ω

tiuidΓ−

∫

∂Ω

qiωi(ui)dΓ .

(4b)

Alternatively, the total potential energy functional for the reduced theory
can be written using as independent kinematic variables the displacements
and the micro–rotations and imposing the kinematic constraint of vanishing
relative rotation somewhere else. In this way it is valid to express the curva-
tures as first order derivatives of the micro–rotations eliminating the strong
continuity requirement in the displacement shape functions in a finite element
implementation. This means C0 elements can still be used. The correspond-
ing functional for the reduced theory is then written like

Π̂(ui, ωi) =
1

2

∫

Ω

Cijklεkl(ui)εij(ui)dΩ +
1

2

∫

Ω

Dijklχij(ωi)χkl(ωi)dΩ−

∫

∂Ω

tiuidΓ−

∫

∂Ω

qiωidΓ .

(4c)

The only difference between the functionals Π̄(ui) and Π̂(ui, ωi) corre-
sponding to the reduced theory lies in the assumed independent kinematic
variables. It must be clarified that in the one corresponding to (4c) an addi-
tional kinematic constraint must be imposed. Following the standard calculus
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of variations approach we can arrive at statements corresponding to the Prin-
ciple of Virtual Work (PVW) for the functionals specified in (4a) to (4c). We
present the corresponding principles for completeness and in order to facilitate
physical interpretation of the involved terms. In the present work however
interest is in the reduced theory.

2.2.1 General Cosserat Couple Stress Solid (Pure displacements).
For the general theory the PVW can be directly derived via the first variation
of (4a).

∫

Ω

σijεij(vi)dΩ+

∫

Ω

mijχij(φi)dΩ +

∫

Ω

τijαij(vi, φi)dΩ−

∫

∂Ω

tividΓ−

∫

∂Ω

qiφidΓ = 0 .

(5a)

In (5a) functions vi, φi represent virtual quantities (first variations) of real
quantities ui, ωi. As can be identified from (5a) a finite element implemen-
tation of the general theory just requires C0 continuity in the interpolation
function in addition to the independent inclusion of the micro–rotation de-
gree of freedom. In this sense a finite element implementation of the theory
is straightforward from the continuity point of view.

2.2.2 Reduced Cosserat Couple Stress Solid (Pure displacements).
For the reduced theory the PVW can be directly derived via the first variation
of (4b).

∫

Ω

σijεij(vi)dΩ +

∫

Ω

mijχij(vi)dΩ −

∫

∂Ω

tividΓ−

∫

∂Ω

qiφi(vi)dΓ = 0 . (5b)

A finite element implementation of the reduced theory based on (5b) de-
mands for C1 continuity in the shape functions as the curvatures correspond
to second order derivatives of the primary displacement function. This is
mathematically inconvenient due to the lack of numerically efficient and well
studied C1 elements.
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2.2.3 Reduced Cosserat Couple Stress Solid (Lagrange multipli-
ers). Alternatively, the problem can be treated starting from (4c) provided
the kinematic constraint is enforced in some sense. This is mathematically
and numerically convenient since the continuity requirements are once again
C0 if the curvatures are expressed as gradients of the micro–rotation which
appear now as independent kinematic variables. The kinematic constrain can
be imposed using a Lagrange multipliers scheme. The corresponding PVW
statement is given in (5c).

∫

Ω

σijεij(vi)dΩ +

∫

Ω

mijχji(φi)dΩ−

∫

Ω

τijαij(vi, φi)dΩ =

∫

∂Ω

tividΓ +

∫

∂Ω

qiφidΓ

∫

Ω

ρijαij(ui, ωi)dΩ = 0 .

(5c)

In (5c) it is possible to identify the Lagrange multiplier ρij with the asym-
metric part of the stress tensor. This statement could be used for a finite
element implementation of the reduced theory, but special attention must be
given to the resulting stiffness matrix at the global level. This illed numerical
behavior is typical of all mixed formulations which may be problematic if the
element is to be implemented in a platform that restricts access to the global
stiffness matrix. The present mixed approach is completely equivalent to the
one available in [27] and has also been used in [28] and [29].

2.2.4 Reduced Cosserat Couple Stress Solid (Penalty function).
The approach followed in 2.2.3 can also be followed but imposing the kine-
matic constraint using a penalty function approach. This strategy has the
advantage that the number of degrees of freedom in a FE formulation remains
the same and the resulting matrices can be assembled following standard pro-
cedures. The corresponding PVW is given in (5d).

∫

Ω

σijεij(vi)dΩ+

∫

Ω

mijχij(φi)dΩ +

∫

Ω

Gαijαij(vi, φi)dΩ−

∫

∂Ω

tividΓ−

∫

∂Ω

qiφidΓ = 0 .

(5d)

In (5d) the term Gαij also corresponds to the asymmetric component of
the stress tensor, but now the constrain is being imposed through the penalty
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parameter G. The advantage is clearly identified in the fact that the theory
can now be formulated with a C0 continuous element. Xia and Hutchinson
[30] used (5d) with degrees of freedom being the displacements and displace-
ments derivatives. In that particular implementation the kinematic constrain
between displacements and rotations was not enforced, therefore leading to
expected pathological mesh dependencies. Wei and Hutchinson [31] used (5d)
with degrees of freedom being only the translational components of displace-
ment and with C0 continuous interpolation functions in a clear violation of
the continuity conditions demanded by the finite element method. Begley
and Hutchinson [32] used the higher order equivalent of (5d) where displace-
ment and displacement derivatives were considered as nodal degrees of free-
dom, again with no enforcement of the kinematic constrain. This approach
guarantees C1 continuity only at the nodes and not along the complete inter–
element boundaries analogously to the elements by [30]. The following section
describes the details of the implementation of the reduced theory using (5d).

2.3 Finite element discretization of the Reduced Couple Stress
Theory–Penalty based/reduced integration approach

This section presents the discretized version of the equations corresponding
to the BVP formulated in (1)–(3) and starting from the constraint variational
problem with corresponding PVW formulated in (5d). The resulting element
can be straightforwardly implemented in standard finite element platforms
allowing user element subroutines. It only requires the formulation of the
local stiffness matrix. In the present work the resulting element has been
implemented as a user element subroutine UEL into the commercial code
ABAQUS. Letting ˆ̄uT

e = [u1v1ω1 . . . unvnωn] correspond to the nodal point
displacements vector for a n–noded element we have the following discrete
version of (5d):





∫

Ωe

BT
EMBEdV + Ga

∫

Ωe

BT
α BαdV



 ˆ̄ue =

∫

∂Ωe

NT t̄dS +

∫

∂Ωe

BT
α q̄dS . (6)

Equation (6) can be understood as follows. Starting from (5d), σij and
ℓ−1mij and εij and ℓχij have been collapsed into generalized stresses Σ and
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generalized strains E respectively. These generalized variables are then re-
lated by a generalized constitutive elasticity matrix M collecting the tensors
C and D and leading to the generalized form of Hooke´s law.

Σ = ME ≡

[

C 0
0 D

] [

ε
lχ

]

. (7a)

Similarly, ti and qi in (5d) have been collapsed into a single tractions vector
t̄ and the general displacement vector including translational and rotational
degrees of freedom into a single displacement vector ū.

The displacements at any point of a n–noded finite element are then in-
terpolated from the nodal point displacements in the standard form

[

ue

ωe

]

=

[

N1
u , 0, N2

u , . . . , NN
u , 0

0, N1
ω, 0, . . . , 0, NN

ω

] [

ûe

ω̂e

]

≡ ūe = N ˆ̄ue , (7b)

where ûe and ωe are translational and rotational nodal degrees of freedom as
shown in figure 3 and N i

u, N i
ω are displacement interpolation functions.

ν

ω u

Figure 3: typical finite element for the case of reduced couple stress theory using
penalty based approach

|112 Ingenieŕıa y Ciencia, ISSN 1794–9165



Juan David Gómez C.

In similar form the generalized strain can be obtained by introducing a
generalized strain–displacement operator

BE =

[

Bε

Bχ

]

=

















∂/∂x 0 0
0 ∂/∂y 0
0 0 0

∂/∂y ∂/∂x 0
0 0 ℓ∂/∂x
0 0 ℓ∂/∂y

















, (7c)

then E = BE ˆ̄ue. Similarly the constraint operator Bα is introduced and such
α = Bα ˆ̄ue and (6) then follows directly from substitution of (7a) through (7d)
in (5d).

Bα =
1

2

[

∂/∂y −∂/∂x N
]

. (7d)

Making explicit the contribution from the translational and rotational
degrees of freedom (6) can be written as

{[

Kuu 0
0 Kωω

]

+

[

Kλ
uu Kλ

uω

Kλ
ωu Kλ

ωω

]} [

ûe

ω̂e

]

=

[

fu

fω

]

. (8)

In (8) the second matrix corresponds to the contribution from the penalty
terms and the following limits should be identified. As Ga →∞ the formula-
tion approaches the reduced couple stress theory. If ℓ→ 0 and Ga →∞ then
the formulation approaches classical theory. Here classical theory means a
solid with translational and rotational degrees of freedom with the kinematic
constrain expressed in (2) enforced by the penalty term and with no contri-
bution from the couple stress terms. Notice that if in (8) both ℓ → 0 and
Ga →∞ simultaneously, then the constrain established in (2) is violated and
the stiffness matrix becomes singular. In (8) the first term in the left hand
side is fully integrated whereas the second term depending on the penalty
number Ga is integrated using a reduced scheme.

2.4 Cosserat couple stress based strain gradient plasticity theory

The continuum model described in the previous section is extended here to
incorporate gradient effects due to non–uniform plastic deformation fields.

Volumen 4, número 8 113|
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This implies the generalization of the stress space to include couple stresses.
In this way the yield surface is considered a sphere in an extended stress
space where the classical theory solid represents just a subset of the more
general model. The gradient effects are then introduced by enhancing the
definition of equivalent plastic strain with the addition of an equivalent plastic
curvature. This approach leads to a straightforward extension of the flow
theory description used in a classical solid which allows the treatment of
cyclic loading problems as in the case of low cycle fatigue analysis.

The formulation that follows presents the continuum flow theory equations
for a rate independent material under the assumption of small displacements
and small strains. A key feature in the formulation is the coupling between
the symmetric part of the stress tensor and the Couple stresses. This coupling
is not present in the initial elastic material model, see (3), but progressively
develops with the appearance of the plastic curvatures as becomes evident in
the continuous version of the elasto–plastic material Jacobian. The proposed
constitutive model was integrated using a radial return scheme. The integra-
tion algorithm was implemented into an ABAQUS material user subroutine
UMAT which is at the same time invoked by the element user subroutine
UEL with formulation proposed in sections 2.2.4 and 2.3.

2.4.1 Rate independent non–linear material behavior. Recalling the
relationship between the symmetric part of the stress tensor and the elastic
strains and the couple stresses and the elastic curvatures first presented in
(3), they can be written in rate form as

σ̇ij = Cijklε̇
el
kl

ℓ−1ṁij = Dijklℓχ̇
el
kl .

(9)

The strains and curvatures are now decoupled into elastic and inelastic com-
ponents which results in

ε̇ij = ε̇el
ij + ε̇pl

ij

ℓχ̇ij = ℓχ̇el
ij + ℓχ̇pl

ij .
(10)

Consider now the following definition of the generalized deviatoric stress
norm ‖ Σ′ ‖

‖ Σ′ ‖= [SijSij + ℓ−1mijℓ
−1mij]

1

2 , (11)
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where Sij is the symmetric deviatoric component of σij and the anti–symmetric
tensor mij is deviatoric in nature. Similarly, we have for the generalized strain
where εij and χij are symmetric and anti–symmetric respectively thus leading
to the following norm for the combined tensor

‖ E ‖= [εijεij + ℓχijℓχij]
1

2 . (12)

Next we introduce a yield surface separating the elastic and inelastic do-
mains and in an analogous way to the classical Hill plasticity models. In order
to consider the Bauschinger effect observed in metals and its alloys, a back–
stress tensor βij and a couple back–stress tensors ℓ−1ηij defining the displace-
ment of the yield surface in stress space can also be defined. The assumption
of the presence of the couple back–stress tensor is motivated theoretically and
not based on any experimental evidence. The difference fij = Sij − βij be-
tween the back–stress and the deviatoric component of the symmetric part of
the Cauchy stress tensor is the relative stress tensor fij. In an analogous form
for the couple back–stress, there follows that the relative couple back–stress
ℓ−1Ĉij is defined by ℓ−1Ĉij = ℓ−1mij − ℓ−1ηij. The generalized relative stress
‖ ξ ‖ can be described in terms of the relative stresses and given by

‖ ~ξ ‖= [fijfij + ℓ−2ĈijĈij ]
1

2 . (13)

With (13) at hand a yield surface is introduced. In the classical theory of
plasticity the yield surface is defined in terms of a hardening parameter that
can be shown to be proportional to the equivalent plastic strain. In the present
couple stress based strain gradient plasticity theory this hardening parameter
incorporates also the gradient effects via the equivalent plastic curvatures.
The generalized yield surface can therefore be expressed as

F (σ, ℓ−1m,α) =‖ ξ ‖ −

√

2

3
K(α) , (14)

where α is the generalized hardening parameter and K(α) represents the
radius of the yield surface in the enhanced stress space. In order to complete
the description of the flow theory representation of the constitutive model, it
is necessary to define the flow rules (i.e., evolution equations for the plastic
strains and curvatures) and hardening laws (i.e., evolution of the hardening
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parameter and back–stress components). Here it is assumed that the flow
rules obey associative normal plasticity rules. To this end, it is necessary to
define the normal to the yield surface as in [9]. Notice that the generalization
implied in (14) amounts to considering a more general stress space with normal
and couple stresses. Thus the yield surface is still considered as an hyper–
sphere in stress space with normal defined by (15),

N̂ =
∂F

∂~Σ
≡ [n̂, v̂] , (15)

where n̂ij = ∂F
∂σij
≡

fij

‖ξij‖
and v̂ij = ∂F

∂ℓ−1mij
≡ ℓ−1 Ĉij

‖ξij‖
.

The flow rules read

ε̇pl
ij = γ

∂F

∂σij
≡ γ

fij

‖ ξij ‖
≡ γ n̂ij , (16a)

ℓχ̇pl
ij = γ

∂F

∂ℓ−1mij
≡ γℓ−1 Ĉij

‖ ξij ‖
≡ γ v̂ij . (16b)

In (16) γ is the consistency parameter which is defined from the loading/unloading
conditions and is related to the evolution of the generalized equivalent plastic
strain defined by the hardening law established in (17).

α̇ =

√

2

3
γ . (17)

The constitutive model is completed with the evolution equations for the
back–stresses

β̇ij =
2

3
H ′γ n̂ij , (18a)

ℓη̇ij =
2

3
H ′γ v̂ij , (18b)

where H ′ represents a kinematic hardening modulus which may be a linear
or a nonlinear function of the hardening parameter α. For instance, the
assumption of a constant kinematic hardening modulus leads to the so–called
Prager–Ziegler rule, [34]. Using (18) into the generalized strain norm for the
plastic quantities yields
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‖ Ėpl ‖=
[

ε̇pl
ij ε̇

pl
ij + ℓ2χ̇pl

ij χ̇
pl
ij

]
1

2

≡
γ

‖ ξij ‖

[

fijfij + ℓ−2ĈijĈij

]
1

2

,

which implies ‖ Ėpl ‖= γ.

Using this result in (17) and integrating we have the following generalized
version of equivalent plastic strain but with the addition of the gradients of
plastic strain.

α(t) =

t
∫

0

√

1

2
‖ Ėpl(τ) ‖ dτ . (19)

The evolution equations are complemented by the loading/unloading con-
ditions which allow the determination of the consistency parameter. In terms
of the yield function defined in (14) the following loading/unloading condition
holds

γ > 0 F (σ, ℓ−1m,α) 6 0 , (20a)

γ > 0 γF (σ, ℓ−1m,α) = 0 . (20b)

And the consistency condition

γḞ (σ, ℓ−1m,α) = 0 . (21)

From the definition of the yield function and the consistency condition the
consistency parameter can be determined

γ =
1

‖ Σ ‖

S : ε̇ + ℓ−1 : ℓχ̇
(

1 + K ′

3µ

) =
1

‖ Σ ‖

S : ε̇ + ℓ−1 : ℓχ̇

K̂
. (22)

Using this result into Hooke’s law yields

σ̇ = C : ε̇−
2µ

K̂
(n̂⊗ n̂) : ε̇−

2µ

K̂
(n̂⊗ v̂) : ℓχ̇ , (23a)

ℓ−1ṁ = D : ℓχ̇−
2µ

K̂
(n̂⊗ v̂) : ε̇−

2µ

K̂
(v̂ ⊗ v̂) : ℓχ̇ . (23b)
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Using C = κÎ⊗ Î +2µ
(

ˆ∐− 1
3 Î ⊗ Î

)

and D = 2µ ˆ∐ and after simplifying

yields

Mep =





κÎ ⊗ Î + 2µ
(

ˆ∐− 1
3 Î ⊗ Î − n̂⊗n̂

K̂

)

−2µ n̂⊗v̂

K̂

−2µ n̂⊗v̂

K̂
2µ

(

ˆ∐− v̂⊗v̂

K̂

)



 . (24)

Alternatively it can be written

Mep =

[

C −C : n̂⊗C:n̂

K̂
−C : n̂⊗D:v̂

K̂

−D : v̂⊗C:n̂

K̂
D −D : v̂⊗D:v̂

K̂

]

. (25)

Equations (23) can be written in compact form like

Σ̇ =
[

M − 2µ

K̂

(

N̂ ⊗ N̂
)]

: Ė . (26)

The constitutive tensor given by (26) is equivalent to the one in (23). It
can be seen from (23) that the coupling between strains and curvatures be-
comes evident in the off–diagonal terms in the generalized constitutive tensor.
The discrete version of the material Jacobian (25) after using a radial return
algorithm is presented below.

M
ep
n+1=

"

κÎ ⊗ Î+2µδn+1

“

ˆ‘−
1

3
Î ⊗ Î

”

−2µθn+1n̂n+1⊗ n̂n+1 −
2µ

K̂
n̂n+1⊗ v̂n+1

−
2µ

K̂
n̂n+1⊗ v̂n+1 2µδn+1

ˆ‘−2µθn+1vn+1⊗ v̂n+1

#

,

(27)

when δt → 0 (27) tends to (25). The coupling between the curvatures and
strains apparent in the continuous version of the tangent stiffness matrix is
again evident in the algorithmic version as can be seen from (27).

3 Numerical validation–simulation of the microbending ex-

periment

The computational framework proposed in the present article is validated
against the results corresponding to the microbending experiments reported
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in [7] and [8]. In both experiments the loads are applied monotonically and
the material is assumed to exhibit rate independent behavior. The material
properties, including the values of the length scale parameter ℓ correspond to
the ones reported in the original papers. The thickness of the micro–beams in
[7] correspond to 12.5 µm, 25.0 µm and 50.0 µm and those in [8] correspond to
25.0 µm and 50.0 µm, 100.0 µm and 150.0 µm. For the 100.0 µm and 150.0 µm
specimens the gradient effects vanish and are not included here. The material
parameters corresponding to both tests are reported in table (1). As reported
by the authors constant values of the length scale have been used. A non–
constant value of the length scale parameter evolving as a function of the ratio
of the grain size to the characteristic specimen dimension has been proposed
by [33]. This evolving length scale may improve the fitting to the reported
experimental results.

Table 1: material parameters–microbending test simulation

Stolken and Evans(1998)

Beam
Σ0 (Mpa) Ep(GPa)

thickness( µm)
12.50 56.00 1.15
25.00 75.00 1.30
50.00 103.00 1.05

Shrotriya et al(2003)

25.00 400.00 1.03
50.00 400.00 1.03

In the simulations a point load was statically applied at the tip of the
different micro–beams in order to achieve a specified moment. Figures 4 and
5 show the experimental and numerical simulation results for both tests. In
figure 4, which corresponds to the results reported in [7], the normalized mo-
ment 4M

Σ0bt2
is meaningful within the strain gradient plasticity theory reported

in [9]. In both simulations the used length scale parameters are ℓ = 5.0 µm
and ℓ = 5.6 µm. The simulation results and those reported in [7] are in very
good agreement. In the experiments a similar strain hardening for the three
foils is observed. This trend has been directly included in the simulation
where the used isotropic hardening regime is also linear. However this is not
the case for the simulations results shown in figure 5 of the test performed
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in [8] where apparently there is a nonlinear strain hardening behavior. Since
there are no parameters reported by the authors to consider this non–linear
effect the numerical predictions remain also linear. This difference is also
observed when comparing the experimental results from both authors as can
be seen from figure 6. Figure 7 shows computational results for the test re-
ported in [7] using a value of ℓ = 0.0 µm which correspond to classical theory.
In the same figure the corresponding experimental results are also shown for
comparison.

Stolken and evans(1998)
Present model

Stolken and Evans Microbending Test

Surface Strain εb

0.00 0.01 0.02 0.03 0.04 0.060.05
0

1

2

3

4

5

6
0

20

40

60

80

120

100

140

4
M

/Σ
0b

t2
M

/b
t2

t=12.5 µm
t=25.0 µm
t=50.0 µm
t=12.5 µm
t=25.0 µm
t=50.0 µm

Figure 4: Stolken and Evans(1998). Microbending experimental results on nickel
foils compared to present model. ℓ = 5.0 µm, E = 220.0 GPa, Σ0(12.5 µm) = 56.0
MPa, Σ0(25.0 µm) = 75.0 MPa, Σ0(50.0 µm) = 103 MPa
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LIGA Nickel foils test

Surface strain εb

M
/b

t2

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

50

100

250

200

150

Test, 25 µm

25 µm

50 µm

50 µm

Test,

Model,

Model,

Figure 5: Shrotriya et al(2003). Microbending experimental results on LIGA nickel
foils compared to present model. ℓ = 5.6 µm, E = 165.0 GPa, Σ0 = 400 MPa

Comparisson of microbending test results

from Stolken and Evans(1998) and Shrotriya et al(2003)

Shrotriya et al(2003) 25 µm

Shrotriya et al(2003) 50 µm

Stolken and Evans(1998) 25.0 µm

Stolken and Evans(1998) 12.5 µm

Stolken and Evans(1998) 50.0 µm

0.00 0.02 0.04 0.06 0.08 0.10 0.12
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Surface Strain εb

M
/b
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Figure 6: experimental results from the microbending tests on LIGA–nickel foils
and pure nickel foils from Shrotriya et al(2003) and Stolken and Evans(1998)
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Stolken and Evans Microbending Test

Surface Strain εb
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C. theory t=12.5 µm

C. theory t=50.0 µm

C. theory t=25.0 µm

Test t=12.5 µm

Test t=25.0 µm

Test t=50.0 µm

M
/b

t2

Figure 7: analysis of Stolken and Evans(1998). Specimens using a classical plasticity
theory model. The classical theory results are compared against experimental results.
ℓ = 0.0 µm, E = 220.0 GPa, Σ0(12.5 µm) = 56.0 MPa, Σ0(25.0 µm) = 75.0 MPa,
Σ0(50.0 µm) = 103 MPa

4 Conclusions

The numerical treatment of a commonly used strain gradient plasticity model,
namely the Cosserat couple stress theory, has been discussed. Two main is-
sues are identified from a numerical point of view. First is the need for higher
order continuity requirements on the interpolation shape functions which is
demanded by the presence of the gradients of plastic strain. Second is the
need for an integration algorithm when the theory is casted in its rate inde-
pendent flow theory form. To study the first problem the theory has been
placed into a variational approach. As a result different alternatives for the
finite element formulation of the problem become available. Although some
of these different alternatives have been previously used by other authors we
have placed them here within a unified mathematical framework. In partic-
ular we have implemented the reduced Cosserat couple stress theory in the
form of a reduced integration/penalty function scheme into a user element in
the commercial finite element code ABAQUS. The Cosserat theory has been
further extended to consider nonlinear material behavior. The equations for
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the case of a rate independent material have been presented in its flow the-
ory form. It is clear that once plastic behavior takes place there is coupling
between the normal stresses and the couple stress quantities. The rate in-
dependent constitutive model has been complemented with an integration
algorithm thus allowing its implementation in the user element subroutine
UEL. In order to validate the implementation we have used the microbend-
ing test in thin nickel foils reported in [7] and [8]. Comparisons between the
simulations and the experimental results show general good agreement.

5 Appendix

5.1 Newton–raphson iteration in ABAQUS (UEL)

Let T ← 0(time)

1. Assume tu,t E,t Σ,t κ known

2. Assemble t+∆tFext =
∫

S

NT t+∆tt̄dS

Initialize t+∆tu(0) ←tu and t+∆tE(0) ← tE
Let i← 0, Flag← 0
Do–While Flag = 0

i← i + 1

(ABAQUS calls user subroutine UEL.f)

Assemble BE , Bα

Call UMAT.f to compute

t+∆tΣ(i−1), t+∆tκ(i−1), t+∆tC(i−1), t+∆tD(i−1)

Assemble t+∆tK(i−1)

Assemble residual (RHS)

t+∆tF (i−1) ←t+∆tFext −

∫

V

BT
E

t+∆tΣ(i−1)dV −

∫

V

BT
α

t+∆tτ (i−1)dV
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(Exits user subroutine UEL.f and returns to ABAQUS)

Solve t+∆tK(i−1)∆u(i) =t+∆tF (i−1)

Update

t+∆tu(i) ←t+∆tu(i−1) + ∆u(i)

t+∆tE(i) ← Bt+∆tE(i)

If ‖error‖<tol Then Flag ← 1
End–Do–While
Let T ← T + ∆T
If T < Tmax Then Goto step 2
Analysis Complete

5.2 Algorithm for UMAT subroutine

Assume a trial state and Solve for the consistency parameter

Σtr
n+1 = Σn + 2µ∆En+1

Σn+1 = Σtr
n+1 − 2µ∆γN̂

¯ n+1

N̂
¯ n+1 =

Σtr
n+1

‖Σtr
n+1

‖

‖ Σtr
n+1 ‖ −

√

2
3K(αn)− 2

3K ′∆γ − 2µ∆γ = 0

∆γ =
F tr

n+1

2µK̂

Obtain linearized jacobian

Σ̇n+1 = M : Ėn+1 − 2µ∆γN̂
¯ n+1

dΣn+1

dEn+1
= M − 2µ

[

N̂
¯ n+1 ⊗

d∆γ
dEn+1

+ ∆γ
dN̂

¯ n+1

dEn+1

]

d∆γ
dEn+1

= 1
K̂

N̂
¯ n+1
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dN̂
¯ n+1

dEn+1
= 2µ

‖Σtr
n+1

‖
Hn+1

Hn+1 =

[

ˆ∐− 1
3 Î ⊗ Î − n̂

¯n+1 ⊗ n̂
¯n+1 0

0 ˆ∐− v̂
¯n+1 ⊗ v̂

¯n+1

]

dΣn+1

dEn+1
= M − 2µ

[

N̂
¯ n+1⊗N̂

¯ n+1

K̂
+ ∆γ2µ

||Σtr
n+1

||
Hn+1

]

M
ep
n+1 =

"

κÎ⊗Î + 2µδn+1

“

ˆ‘−
1

3
Î⊗Î

”

− 2µθ̄n+1n̂
¯n+1⊗ n̂

¯n+1 −
2µ

K̂
n̂
¯n+1⊗ v̂

¯n+1

−
2µ

K̂
n̂
¯n+1⊗ v̂

¯n+1 −2µδn+1
ˆ‘−2µθ̄n+1v

¯n+1⊗ v̂
¯n+1

#
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