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Abstract
This paper presents the methodology of the indicator function–discrete ele-
ments probability density function statistical average applied to Two–phase
flow modelling. This formulation allows to consider particles of arbitrary shape
and size and it can be applied to any laminar or turbulent flow. In the case of
equal sized spherical dispersed elements, the most common case found in the
literature, the final expression for the interaction terms (contributions that
describe the effect of the second phase on the continuous one) are obtained
without great difficulties due to the high isotropy of the spherical shape. This
task, in the general case of non–spherical non–equal particles is no longer
straightforward and the derivation of the appropriate general interaction terms
is presented in §4. In the case that the dispersed elements are small enough,
some simplifications can be further introduced leading to a final presentation
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Analytic expressions for interface terms in general dispersed Two–phase flow laden with

arbitrary–shaped dispersed elements

that remembers that obtained for the simplest case of spherical particles, but
where some of the quantities must be adequately redefined.

Key words: Dispersed Two–phase Flow, arbitrary shaped elements, proba-

bility density function, indicator function.

Resumen
Este art́ıculo presenta la aplicación al modelado de flujos bifásicos de la me-
todoloǵıa de promediado estad́ıstico utilizando la combinación de la función
indicadora de fase y la función densidad de probabilidad de los elementos
dispersos. Esta formulación permite considerar part́ıculas de forma y tamaño
arbitrarios y puede aplicarse a flujo laminar o turbulento. En el caso de ele-
mentos dispersos esféricos de igual tamaño, el más frecuente reportado en la
literatura, la expresión final de los términos de interacción (contribuciones
que describen el efecto de la segunda fase sobre la fase continua) se obtiene
sin mayores dificultades debido a la isotroṕıa de la forma esférica. En el caso
general, sin embargo, la tarea es más complicada por lo que la derivación de los
términos de interacción generales se aborda en §4. Si los elementos dispersos
son suficientemente pequeños se pueden introducir simplificaciones adiciona-
les permitiendo obtener una expresión final que recuerda la obtenida para el
caso más simple de part́ıculas no esféricas, aunque algunas cantidades deben
redefinirse adecuadamente.

Palabras claves: flujo bifásico disperso, elementos de forma arbitraria, fun-
ción densidad de probabilidad, función indicadora.

1 Introduction

In the theoretical deduction of Two–phase flow equations, extensive use has
been made of volume, temporal or ensemble averages and double/mixed aver-
aging operators. Besides, conditioned averaging formalisms based on a phase
indicator function, I, and Reynolds transport theorem are widely found in
Two–phase Flow literature [1, 2, 3, 4, 5, 6].

Despite the consolidation of some of the above mentioned approaches, the
appropriate theoretical technique to generate useful exact continuous phase
Eulerian equations to deal with general Two–Phase Flow is nowadays far from
being a closed subject. In fact, a lot of work has been done on developing
semi–empirical formulations for engineering purposes.
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It is well known that for any systematic conditioned averaging procedure
the mean value of any scalar derivative appearing in an instantaneous Eulerian
equation is transformed into a derivative of the scalar averaged mean value,
plus an extra interface source term. This term introduces information about
the presence of the other phase into the equations.

In Lundgren (1972) and Hercynski & Pienkowska (1980) [1, 4] a promising
alternative point of view is found following the usual conditioning technique
based on a phase indicator function and properly defining a simple probability
density function (PDF) for a suspension of spherical solid particles. Within
the context of PDF–indicator function, Prosperetti & Zhang (1994) [7] have
developed another kind of PDF approach for spheres in a hydrodynamic po-
tential flow and obtained Eulerian transport equations in the framework of
the two–fluid engineering modelling with application to bubbly flows. How-
ever, the extension of the conditioning average procedure for disperse elements
other than spherical ones in general flows was not a trivial task. In Aliod &
Dopazo (1990) [8] and Láın & Aliod (2000) [9] the main relationships for
arbitrary shaped particles was immediately applied to establish a k − ǫ ex-
tended model for gas–solid turbulent two–phase jet flows. Nevertheless, up
to now no detailed foundation or proof of these essential relationships and
related properties has been available in the literature. The detailed presenta-
tion of the derivation of the fundamental relationships of conditioned average
for Two–Phase Flow laden with discrete elements of arbitrary size and shape,
which can be applied to any laminar of turbulent flow, constitutes the objec-
tive of this paper. Additionally, in order to illustrate the capabilities of the
introduced approach, the essential relationships are employed to present a de-
tailed derivation of the statistically averaged exact continuity and momentum
equations for Two–Phase Flow, including examples of closure of interaction
terms.

2 Description of the Two–Phase system

The disperse phase is treated as a cloud of N different material elements, σj ,
identified by index, j = 1, ..., N , each of them with a volume V d j and limited
by a closed surface Sj that defines the interface (Fig. 1). yj will denote the
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σj position, defined, for instance, by its geometrical center

yj =
1

V d j

∫

V d j

xdx; dx = dx1dx2dx3 ∀ σj .

Each disperse element dynamic and geometrical configuration will be charac-
terized by a set of variables, denoted by zj, which will describe the shape,
size and thermo–mechanical state (e.g., velocity vj , temperature T j, density
ρd j , etc.) of σj located at yj.

Vd
j

Hj =0

Id =1

Hj =1

Sj =0da

υs

Id =0j=1

Id =1

j=N

Id =1

x

yj

nj

Figure 1: Example of disperse phase elements. It is necessary to distinguish between
the disperse element geometrical center, y, and the space point, x, in which disperse
element boundary is present

Even for small values of N it is neither possible nor necessary to describe
the element dynamics in a deterministic way. Consequently, a probability
density function (PDF) denoted by PN

(

t,y1,z1,y2,z2, ...,yN ,zN
)

is intro-
duced, which represents the probability of having, at instant t, the σ1 element
located around point y1, with state z1 while the σ2 element is around y2 with
state z2, ..., and so on. For the sake of simplicity the following notation is
adopted:

{

CN
}

=
{

Y N ,ZN
}

=
{

y1,z1,y2,z2, ...,yN ,zN
}

,

PN
(

t, CN
)

= PN
(

t,Y N ,ZN
)

.
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The PN particle indifference principle, or full PN symmetry, is a well
known and essential property of any discrete elements distribution that will
be assumed. It stands that the interchange of position (y), shape and dynamic
states (z) between whatever two disperse elements i, j provides the same value
for the PN function. Therefore, if Cj = {yj ,zj}, this symmetry property
means

PN (t,C1, ...,C i, ...,Cj, ...,CN ) = PN (t,C1, ...,Cj , ...,C i, ...,CN ) .

In order to apply the conditioning formalism, phase indicator functions
for the continous phase, I, and the disperse phase, Id, are defined in terms of
the Heaviside function Hj(Sj):

Id(x, t, CN ) =

N
∑

j=1

[

1 − Hj
(

Sj
)]

, I(x, t, CN ) = 1 − Id(x, t, CN ) ,

where Hj(Sj), equals 1 if (x, t) is in the continuous phase (Sj > 0) and equal
0 otherwise.

The average value of any flow quantity φ(x, t, CN ) is defined as

〈φ〉 (x, t) =
1

N !

∫

φ(x, t, CN )PN (t, CN )dCN . (1)

3 Conditional average derivatives

Due to the discontinuity of I in the interfaces, the conmutativity between the
conditioned averaging and derivative operators is lost. This is an essential
feature because, when conditioning continuous phase instantaneous equations
(i.e., Navier–Stokes–Fourier equations), the conditioned average of spatial and
time derivatives systematically appears. Therefore, it is necessary to find an
expression for the derivative of the conditional average of the generic variable
φ. It is not difficult to show that

(αφ),λ = 〈Iφ〉 ,λ = 〈(Iφ),λ 〉 = 〈I φ,λ 〉 + 〈I,λ φ〉 , (2)

where α is the continuous phase void fraction, α = 〈I〉, φ = 〈φ/I = 1〉, is the
conditioned average of φ to the presence of continuous phase and λ subscript
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after a comma denotes either spatial or time derivatives. The expression (2)
shows that the derivative of the conditioned average of φ, left hand side (LHS),
is split in two parts, right hand side (RHS): the first one is the conditioned
average of the derivative of φ, and the second, named interaction term, in-
cludes the contribution of the interfaces of dispersed elements and is related
to the derivatives of the indicator function.

The derivative of I, in the sense of distributions, can be computed in terms
of the derivatives of the Heaviside step function as

I,λ =

N
∑

j=1

dHj

dSj
Sj ,λ =

N
∑

j=1

δj(Sj)Sj ,λ , (3)

where δ(S) is the Dirac’s delta whose value is ∞ when S = 0 (i.e., in the
interface) and equals to zero anywhere else.

If Sj(x − yj) = 0 is the implicit equation of σj interface, its derivatives
can be computed as

Sj,t = −|∇xSj| vs · n
j

Sj,i = |∇xSj| nj
i

⇒ Sj ,λ = |∇xSj| nj
λ; nj

λ =

{

−vs · n
j if λ ≡ t

nj
i if λ = i

.

(4)

Then, from (3), (4) and average definition (1)

〈I,λ φ〉 =
1

N !

∫





N
∑

j=1

δj(Sj) | ∇xSj | nj
λφ



PNdCN = αs 〈φ | ∇xS | nλ/S = 0〉

(5)
where αs represents the expected value of having interface at (x, t)

αs(x, t) =
1

N !

∫





N
∑

j=1

δj(Sj)



PNdCN =

∫

δ(S)P ∗(t,y)dy . (6)

P ∗ is the reduced probability function of one particule obtained by integration
on the other N−1 particles configuration. In the second equality of (6) the PN

particle indifference principle has been applied, resulting in the equivalence
of all the addends under the summatory symbol.
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Nevertheless, in spite of the straightforward deduction of the formulae (5),
this presentation lacks direct physical interpretation and useful properties for
disperse Two–Phase Flow practical modelling. Neither the expected value of
interface presence, αs, nor the apparently spurious factor | ∇xS | are evident
and measurable properties of the flow.

4 Interaction term general expression

Expression (5) can be integrated firstly on the disperse element position vari-
ables keeping the rest of the dynamic variables and other particles frozen

〈I,λ φ〉 =
1

N !

N
∑

j=1

∫

dzj

∫

dCN−1

∫

dyjδj(Sj) | ∇xS
j | nj

λφPN . (7)

δj(Sj) only captures events in which some element, whose center is located
at yj, presents part of its boundary Sj(x − yj) at x (see Fig. 2). For any
function f(t,x,y), in the Appendix is shown that

∫

dyδ(S(x − y))f(t,x,y) =

∫

S′

days

f(t,x,ys)

| ∇yS |y=ys

, (8)

where points ys verify S(x−ys) = 0 and | ∇yS |y=ys
6= 0 (i.e., ys are regular

points on the surface S).

Y2

S2

x

S 

Y3

Y1

S1

S3

Figure 2: Three different realizations of a frozen shape disperse element, whose
volume center yi is located over S′, producing interface presence at x
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The volume integral of LHS of (8), capturing only disperse element center
position y values making Sj(x−yj) = 0, is transformed into the RHS surface
integral extended along a surface denoted by S′ and called the homologous

surface of S with reference to x. S′ is defined by the set of points ys which
have the property that, when locating the center of a given disperse element
(whose boundary is S) at ys, some part of the particle boundary passes by
the fixed point x. Figure 2 illustrates the S′ concept. A certain disperse ele-
ment with state z is visualized for three different realizations over S′, offering
at the same point x different parts of its boundary. Other locations of dis-
perse element center y apart from those located over S′(ys) will not produce
interface presence at x and will not contribute to (7) LHS integral.

In fact S′ is obtained from S by making a symmetry of center (x − y)/2.
Therefore, S and S′ have identical local geometries for respective ys, x points.

Applying (8) to (7), denoting Cj
s = {yj

s,zj}, it is possible to write

〈I,λ φ〉 =
1

N !

N
∑

j=1

∫

dzj

∫

dCN−1×

∫

S′

dayj
s
φ(t,x,Cj

s, C
N−1)PN (t,Cj

s, C
N−1)

| ∇xSj |

| ∇ySj |y=yj
s

nj
λ(t,x,Cj

s) .

Integration on CN−1 configuration and taking into account the PN particle
indifference, it results

〈I,λ φ〉 =

∫

dz

∫

S′

days
φs

| ∇xS |

| ∇yS |y=ys

nλP ∗(t,ys,z) , (9)

where φs = φ(t,x,ys,z) does only depend on its own disperse element para-
meters.

Due to the relationship between the geometries of S and S′ (Fig. 3) it is
not difficult to demonstrate that the quotient between both gradients appear-
ing in (9) is just one. Therefore, the general expression for the interaction
term is found

〈I,λ φ〉 =

∫

dz

∫

S′

days
φ(t,x′,z)nλ(x′, t,z)P ∗(t,ys,z) , (10)
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where x is fixed, ys ∈ S′ and x′ = x − ys. It is remarkable that for a given
disperse element state z, the φnλ product depends only on relative vector
position x′ with respect to its geometrical centre, regardless of the absolute
positions.

∆

∆

yS

days

x

x

xS

ys

x 

S (x - ys) = 0

S  (ys - x) = 0

da

Figure 3: Geometrical similarity between points of S, disperse element boundary,
and S′, its homologous surface

It should be stressed that (10) constitutes a quite general expression for the
interaction term for multiphase disperse flows and no restrictions are required
apart from the finite volume of the disperse elements. The physical meaning
of the interaction term is straightforward. It tells us that the interaction
term at one point x is just the statistical average of all interfacial fluxes of
the φ volumetric property, obtained in each realization in which any interface
element is present at x. The statistical average is performed in two steps.
Inner integral over S′ represents the grouping of all those realizations for a
frozen geometrical–dynamic state while the outer integral accounts for all
possible states.

5 The case of small disperse discrete elements

In the case in which the dispersed elements are small enough, the interaction
term (10) can be further simplified providing an equivalent expression with a
clear interpretation and analitically fruitful for Two–Phase Flow modelling.
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Let ld be the characteristic size of disperse elements and L be the charac-
teristic length of the region where the disperse phase flow develops. If ld ≪ L
(a condition quite usual for disperse Two–Phase Flow) the interaction term
(10) can be split in two terms

〈I,λ φ〉 = Iφλ + ǫφλ , (11)

where Iφλ is called main contribution and ǫφλ is named residue. Both are
evaluated as:

Iφλ(x, t) =
αd

V d
∗

∮

Sp

φnλda

∗

; ǫφλ(x, t) = −







αd

V d
∗

∮

Sp

φx′

inλda

∗







,i

+σ

(

(

ld

L

)2
)

.

(12)

V d
∗

is the average disperse phase volume conditioned to the presence of the
disperse phase centered at (x, t) and the integration surface, Sp, is the disperse
element interface centered at x (see Fig. 4).

S

S

da pp Sp

Vd

V

daysYs

x

x

x

Figure 4: Equivalence between points of S, disperse element boundary, and Sp,
boundary of the disperse element whose volume center is displaced to x
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Moreover, if Iφλ is not identically null and

σ







∮

Sp

x′φnλda






≤ ldσ







∮

Sp

φnλda






, (13)

where σ() denotes order of magnitude, the magnitude order of ǫφλ is much
smaller than the Iφλ one, σ(ǫφλ) ≪ σ(Iφλ).

Hereafter, (11) and (12) will be derived starting from (10). The first
objective is to transform (10) into an integral over the real disperse element
surface Sp centered at x instead of the mathematical S′ surface. For this
purpose, it should be noted first that if the σd center is displaced from ys to
the x point (Fig. 4), the relation x′ = p−x will define some relative interfacial
position and taking into account the geometrical similarity between Sp and
S′, the integral on (10) over the homologous surface with reference to x can be
written as an integral over the boundary of the disperse element Sp centered
at x

〈I,λ φ〉 =

∫

dz

∮

Sp

daφ(x′, t,z)nλ(x′, t,z)P ∗(x − x′, t,z) , (14)

with Sp ≡ S(p − x) = 0 and da is the surface element on Sp.

If ld ≪ L, P ∗ can be expanded in Taylor series around x. To the first
order

P ∗(t,x − x′,z) = P ∗(t,x,z) − P ∗,i (t,x,z)x′

i + σ

(

(

ld

L

)2
)

.

σ(( ld

L
)2) is a residue or order (ld/L)2. Thus, within this approximation order

(14) can be evaluated as

〈I,λ φ〉=

∫

dzP ∗(t,x,z)







∮

Sp

daφ(x′, t,z)nλ(x′, t,z)






−

−

∫

dz







∮

Sp

daP ∗,i (t,x,z)x′

iφ(x′, t,z)nλ(x′, t,z)






+ σ

(

(

ld

L

)2
)

.(15)
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In such a case, the first addend in (15) is expressed as

Iφλ =

∫

dzP ∗







∮

Sp

daφnλ






= N

∮

Sp

φnλda

∗

,

where N (x, t) =
∫

dzP ∗(t,x,z) is the local particle number density and the
overbar followed by an asterisk denotes the average conditioned to the pres-
ence of disperse phase centered at (x, t).

In the second addend in (15) the derivative can be commuted with the
integrals since there is no other dependence on x except in P ∗, which is also
extracted from the surface integral

ǫφλ = −






N

∮

Sp

φx′

inλda

∗







,i

+ σ

(

(

ld

L

)2
)

.

The next step is to calculate the particle number density N (t,x). In order
to do this, the phase indicator function Id expectation value is evaluated as

αd =
〈

Id
〉

(x, t) =
1

N !

∫

dCNPN (t, CN )

N
∑

j=1

[

1 − Hj(Sj(x − yj)
]

.

Applying the distributive property, integrating CN−1 and taking into ac-
count the PN particle indifference again, the following is obtained

αd =

∫

dz

∫

V ′

dyP ∗(t,y,z) ,

where the spatial integration domain of this expression is reduced to the set
of points y producing the presence of disperse elements at (x, t). In the same
way as the reasoning followed previously, this region is V ′, the volume enclosed
by the homologous surface S′.

Introducing again the first order expansion of P ∗(y) around x

αd =

∫

dz







P ∗V d + P ∗,i

∫

V ′

dy(yi − xi)







+ σ

(

(

ld

L

)2
)

.
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But V ′ is a symmetry of a σd element with its center at x, so the second
addend is null. Thus, to the first order

αd =

∫

dzV dP ∗ + σ

(

(

ld

L

)2
)

= V d
∗

∫

P ∗dz + σ

(

(

ld

L

)2
)

= V d
∗

N + σ

(

(

ld

L

)2
)

.

This result supplies a straightforward interpretation of the expectation
value of the Id indicator function, αd: it tells us that αd is the average disperse
elements’ volume fraction and therefore the local particle number density is
expressed as

N =

∫

P ∗dz ≈
αd

V d
∗

,

which is accurate up to the first order.

To summarize, the expression of 〈I,λ φ〉 estimated to the first order in the
series expansion of P ∗ around x is

〈I,λ φ〉 =
αd

V d
∗

∮

Sp

φnλda

∗

−







αd

V d
∗

∮

Sp

x′

iφnλda

∗







,i

+ σ

(

(

ld

L

)2
)

= Iφλ + ǫφλ .

(16)
With this result, (11) and (12) are proven.

To finish, it remains to demonstrate that if the main contribution is dif-
ferent from zero and condition (13) is satisfied, the order of magnitude or the
residue ǫφλ is much smaller than the order of magnitude of Iφλ. In order to
show this, note that the order of magnitude of residue can be estimated as

σ (ǫφλ) ≈
1

L

αd

V d
∗
σ







∮

Sp

x′

iφnλda

∗






. (17)
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Therefore, from (13) and (17)

σ (ǫφλ) ≈
1

L

αd

V d
∗

σ







∮

Sp

x′

iφnλda

∗






≤

ld

L

αd

V d
∗

σ







∮

Sp

φnλda

∗






≈

ld

L
σ (Iφλ) ;

consequently, as long as ld ≪ L is satisfied, σ (ǫφλ) ≪ σ (Iφλ).

In general, the hypothesis (ld ≪ L) and the condition (13) are frequently
found in turbulent disperse Two–Phase Flow of industrial interest. As a
consequence of the results stated in the previous section, provided that Iφλ 6=
0, the interaction term can be approximated as

〈Iφ,λ 〉 ≈ (αφ),λ −
αd

V d
∗

∮

Sp

φnλda

∗

, (18)

which constitutes the essential relation for conditioned statistical average.
Presentation (18) is much more convenient than the first expression deduced
for the interaction term, relation (10).

The interaction term appearing in (18) represents the statistical average

of the net flux over the entire boundary of a single disperse element, Sp, per

unit average volume, times the disperse phase void fraction. In the interaction
term the net flux and the disperse phase volume statistical average values are
computed as conditioned to particle centre presence at point x. The statisti-
cally averaged variables α, φ are truly local and time dependent. Moreover,
volume filtering effects of small scales associated with conventional volume
averages are absent.

Furthermore (18) resembles and is directly related to the relationships
appearing in the context of volume average [10], but the present approach
allows unnecesary complexities in the subsequent Two–Phase Flow modelling
to be overcome because the introduction of complex space–time weighting
functions or additional time averaging procedures is avoided.

An additional aspect to be emphasised is related to the possible subsequent
analytical transformations of the interaction term at (18), because the φnλ

flux extends over the closed surface defined by the disperse element boundary,
Sp.
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It must be noticed that the appearance of the residue contribution ǫφλ in
(16) is a consequence of the different values of φP ∗ in the neighbourhood of
x. φP ∗ has been approximated by a linear expansion around x which is valid
as far as σ (|x′|/L) ≈ ld/L ≪ 1. Therefore the residue is a contribution of

order σ( ld

L
) regarding to the main contribution.

In many contexts, such as the ones associated with Two–Phase Flow tur-
bulent modelling, it may be accurate enough to retain only the main contribu-

tion to the interaction term as long as strong uncertainties, coming from the
approximate closures of the several transport and interaction contributions

involved, are clearly superior to residue contributions of order
(

ld

L

)

.

It should be noted that (13) establishes that the order of magnitude of
x′

iφ flux over the particle boundary can be approximated by the order of
magnitude of total φ flux through the interface multiplied by a characteristic
length of the particle size. Although condition (13) will generally be satisfied
by arbitrary functions φ over regular or irregular particle shapes it should
be emphasized that ǫφλ should not be neglected without further considera-
tions. For instance, when the main contribution exactly cancels, (i.e. φ or
φnλ is strictly constant over Sp) the interaction term reduces to the residue
contribution, then, it should be kept or discarded in comparison with other
flow terms. Moreover, theoretical limiting cases, where known exact analyti-
cal solutions are to be reconstructed or small correction terms are of interest,
residue should be retained, otherwise inconsistencies or inaccurate results will
appear.

6 Relevance for Two–Phase Flow modelling

Conditioned averaging to deduce continuous phase Eulerian equations in mul-
tiphase flows has been examined in detail in the literature. Nevertheless, in
order to illustrate the most important characteristics of the present approach,
we will derive the continuous phase continuity and momentum equations. De-
duction of the general equations for continuous phase in Two–Phase Flow
where relationship (18) applies can be achieved by the standard methodology
used in the indicator function context.
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The continuous phase instantaneous local Eulerian continuity, momentum
equations are written down in a conservative presentation for convenience

ρ,t + [ρui] ,i = 0

[ρuj] ,t + [ρuiuj] ,i = [−pδij + τij] ,i +ρgj , (19)

ui, p, ρ and τij are the instantaneous velocity, pressure, density and viscous
stress tensor respectively.

Since the system (19) is not valid everywhere but only at points x, where
at time t, a continuous phase exists, these events must be differentiated with
the aid of the continuous phase indicator function.

Multiplying both equations on system (19) by I and taking the statistical
average (1) afterwards

〈Iρ,t 〉 + 〈I [ρui] ,i 〉 = 0

〈I [ρuj ] ,t 〉 + 〈I [ρuiuj ] ,i 〉 = 〈I [−pδij + τij ] ,i 〉 + 〈Iρgj〉 . (20)

In (20), all contributions, except volume force 〈Iρgj〉, are conditioned av-
erages of variable derivatives. The interaction terms in (20) for ρ(ui − υsi)ni,
ρuj(ui−υsi)ni and τijnj are defined at the disperse phase, continuous through
the interface and expressed according to (18) Therefore, by systematically ap-
plying the essential relation for conditioned statistical average (18), recalling
the nλ definition depending on the kind of derivative, spatial or temporal,
and locating all interaction terms on the right hand side of the respective
equation, continuity yields to

[αρ] ,t + [αρUi] ,i =
αd

V d
∗

∮

Sp

ρ [ui − υsi] nida

∗

+ ǫI

and momentum

[αρUj ] ,t + [αρUiUj] ,i = − [αP ] ,j + [ατij ] ,i −
[

αρu′

iu
′

j

]

,i +αρgj−

−
αd

V d
∗

∮

Sp

[−pδij + τij] nida

∗

+
αd

V d
∗

∮

Sp

ρuj [ui − υsi]nida

∗

+ ǫpj + ǫ[τij ]i + ǫIM .
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The usual notation is assumed: Ui = ui, P = p, u′

i = ui − Ui. ǫI and ǫIM

are the residues associated to the entrainment terms in the continuity and
momentum equations respectively, ǫpj corresponds to the pressure gradient
and ǫ[τij ]i to the stress tensor. Henceforth, for simplicity, ρ constant will be
assumed.

The combination of interaction terms coming from temporal and con-
vective contributions in any conservative equation generate a characteristic
source term, the entrainment term, associated with interfacial mass trans-
fer phenomena. When there is no local mass transfer across the interface
u = υs, all the entrainment source terms become zero (main contribution
and residue).

For a Navier–Stokes viscous stress tensor in an incompressible flow

ατij = 〈Iµ [ui,j + uj,i]〉 . (21)

Since the conditioned averaged viscous tensor (21) contains further spa-
tial derivatives, essential relationship (18) should be carefully applied again.
Assuming a constant dynamic viscosity coefficient, µ

ατij = µ [[αUi] ,j + [αUj ] ,i ] −
αd

V d
∗

∮

Sp

µ [uinj + ujni] da

∗

+ µ
[

ǫuij + ǫuj i

]

.

The second term in the right hand side is the so called “extradeformation
term” [3], related to the viscous stress tensor and due to average local defor-
mation introduced by disperse element boundaries. Let’s take a closer look
to this term.

It is known that an approximation of the velocity around a point in the
dispersed element σd is a function of the deformation velocity tensor Dij and
vorticity vector ω evaluated at the element center, i.e.

υi(x
′) ≈ υoi +

(

1

2
ǫijkωj + Dik

)

x′

k = ai + bikx
′

k , (22)

where ǫijk is the alternator pseudo-tensor. (22) will be exact for spherical par-
ticles rotating with angular velocity Ωj = 1

2ωj and experiencing an isotropic
deformation Dij = ṙ

r
δij , r being the particle radius and ṙ the radius expansion
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rate per unit time (such a disperse element will be kinematically characterized
by the set υo, Ω, r, ṙ). Applying the divergence theorem it is not difficult to
obtain

αd

V d
∗

∮

Sp

υinjda

∗

= αd

[

1

2
ǫijkωk

d + Dij
d
]

. (23)

Taking into account the anti-symmetry properties of the alternator pseudo-
tensor and the no-slip condition in the dispersed element surface, using (23),
the ‘extradeformation term’ is written as:

−
αd

V d
∗

∮

Sp

µ [uinj + ujni] da

∗

= −αdµ
(

Dij
d

+ Dji
d
)

. (24)

When disperse elements of any shape move without deformation (trans-
lation and/or rigid rotation) (24) cancels. For a spherical particle ongoing
isotropic expansion (24) is simply

− αdµ
(

Dd
ij + Dd

ij

)

= −αd 2

3
µTr

[

Dd
ij

]

δij = −αdµ2
ṙ

r
δij . (25)

The expression (25) can be interpreted, if desired, as volumetric viscous stress
related to disperse element volume changes, affected by a pseudo–volumetric
viscosity αd 2

3µ. In any case, (24) allows the order of magnitude to be com-
puted easily and the extradeformation term to be approximated for modelling
purposes, making it clear that the term depends on the average of the defor-
mation tensor inside the disperse elements. Depending on the relative order
of magnitude of the shear rates on the mean flow, U

L
, and on the disperse

elements, ṙ
ld

, the ‘extradeformation term’ could be dominant or negligible.

In order to illustrate the analitycal capabilities of the presented approach,
let us consider a generalisation of (22) for the generic variable φ. Let us
suppose that φ can be expressed inside the disperse element as a polynomial
of type (which can be accepted at some degree of accuracy for any variable if
the disperse element is small enough)

φ(x′) = a0 + bix
′

i + cijx
′

ix
′

j + dijlx
′

ix
′

jx
′

l , (26)

where x′ is the position of one disperse element point regarding its center
x and a0, {bi}, {cij} and {dijl} are coefficients which are functions only
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of the disperse element dynamics. It is clear that at (26) the magnitude

order of the φ polynomial expression terms are not
(

ld

L

)

,
(

ld

L

)2
,
(

ld

L

)3
, since

coefficients bij, cij , dijl are estimated in terms of the particle inner derivatives.
Therefore, as many terms as necessary should be retained (26) to reconstruct
the φ over the disperse element, without any contradiction with the limiting

first order
(

ld

L

)

approach defined in (16). It is easy to show, applying Gauss

theorem, that the interaction term for the spatial derivative in the k direction
is calculated

αd

V d
∗

∮

Sp

φnkda

∗

= αd
[

bk
d
+ dkijIij

d
+ dikjIij

d
+ dijkIij

d
]

, (27)

where Iij are the geometrical inertia tensor components of the disperse ele-
ment which, of course, depend on its shape.

The structure and symmetry properties of the series expansion coefficients
of Eq. (26) allow us to simplify (27) which will help to model different inter-
action terms.

7 Conclusion

Derivation of the conditioned average essential relationships for general (lam-
inar or turbulent) Two–Phase Flow, based on joint probability density and
phase indicator functions, is presented in detail. No restrictions on shape,
size or concentration of the disperse elements are required.

Useful transformations and related results have been documented specifi-
cally for disperse Two–Phase Flow. The final expressions provide consistent
and meaningful interaction terms similar to others found with other indicator
function and volume average procedures, but the adopted approach overcomes
some conceptual and practical problems arising in these approaches and sup-
plies helpful simplificative properties.

When the characteristic length of disperse elements is much smaller than
the integral flow scale, interaction terms transform into particularly simple
analytical structure. The interaction term is then split in two: a main con-
tribution and a residue. The first one shows a fairly meaningful structure
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resembling the structure of the volume average interaction term; moreover,
it has a precise mathematical definition and is computed as the average of
the φ general property flux over the whole boundary of a single disperse el-
ement, conditioned to realizations where the disperse element volume center
is located at the point in which the statistical average is evaluated. The re-
maining term, or residue, can be neglected regarding to the main contribution
under specified conditions generally fulfilled at disperse Two–Phase Flow. In
addition, the residue also shows a precise mathematical structure allowing it
to be computed exactly or its order of magnitude to be approximated. As
an illustrative example the presented expresions are used to derive the sta-
tistically averaged continuity and momentum equations for the continuous
phase of a dispersed Two–Phase flow. The corresponding interaction terms,
including the so–called ‘extradeformation term’, are in some cases calculated
explicitely.

Appendix

Here, (8) is demonstrated. In order to achieve
∫

dyδ(S(x − y))f(t,x,y) =

∫

dys

f(t,x,ys)

| ∇yS |y=ys

let us recall the following property of the Dirac delta in one dimension [11]

δ(g(y)) =
∑

ys

1

| dg
dy

|y=ys

δ(y − ys) ,

where ys are the zeros of the function g, i.e., the solutions of the equation
g(y) = 0. It is supposed that the derivative dg/dy is different from zero at ys.

In the three–dimensional case, the zeros of the equation g(y) = 0 are a
continuous set and the appropriate generalization of the previous property
will be

δ(g(y)) =

∫

ys

1

| ∇yg |y=ys

δ(y − ys)dys

supposing that | ∇yg |y=ys
6= 0 ∀ ys solution of g(y) = 0. The integral is

extended to the domain defined by the zeros of g(y).
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Here, the zeros, regarding y, of the function S(x−y) = 0 define a surface
and then
∫

dyδ(S(x − y))f(t,x,y) =

∫

dyf(t,x,y)

∫

ys

days

1

| ∇yS |y=ys

δ(y − ys) ,

where ys are the solution of S(x − y) = 0 for a given x. Changing the
integration sequence and performing the integration on y using the Dirac’s
delta
∫

ys

days

1

| ∇yS |y=ys

∫

dyf(t,x,y)δ(y−ys) =

∫

ys

days
f(t,x,ys)

1

| ∇yS |y=ys

The ys points constitute a surface given by S′ = S(−(ys −x)) as referred
in the main text.
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Nomenclature

Latin symbols

Dij [ 1
s
] dispersed phase deformation tensor R [m] particle radius

f generic function S surface

g [ m

s2 ] acceleration of gravity t [s] time

H Heaviside function u [m

s
] instantaneous gas velocity

I indicator function U [m

s
] averaged gas velocity

Iφλ main part interaction term V sup [m3]volume

Isub interaction term x [m] spatial point

L [m] integral length scale x′ [m] relative location to particle center

ld [m] characteristic particle size ysup [m] particle center position

n normal vector Y N Center position vector N particles

p [ Kg

m·s2 ] instantaneous gas pressure zsup dynamic variable

P [ Kg

m·s2 ]mean gas pressure ZN Dynamic variable vectorN particles

P sup probability density function T [K] Temperature

Greek symbols

α [−] void fraction τ [m2

s2 ] stress tensor

δ Dirac’s delta υ [m

s
] instantaneous particle velocity

ǫijk alternator pseudo-tensor φ generic variable

ǫφλ residue interaction term variable φ ω [ 1
s
] vorticity

µ [ Kg

m·s
] dynamic viscosity Ω [ 1

s
] angular velocity

ρ [Kg

m3 ] density

σ() order of magnitude Iij [m2] geometric inertia tensor

σj discrete element j N local particle number density

Subscripts

i spatial component λ spatial or temporal component

s surface · time rate change

sub subscript

Superscripts

′ fluctuating component j label of element

d dispersed phase sup superscript

Other Symbols

Tr[−] tensor trace

〈 〉 ensemble average

continuousphase conditioned average
d dispersed phase conditioned average
∗ centered disperse phase conditioned

average
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