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Resumen

Los hipercomputadores computan funciones o números, o en general solucio-
nan problemas que no pueden ser computados o solucionados por una máquina
de Turing. Se presenta una adaptación del algoritmo cuántico hipercompu-
tacional propuesto por Tien D. Kieu, al álgebra dinámica su(1, 1) realizada
en los potenciales Pöschl-Teller. El problema clásicamente incomputable que
se resuelve con este algoritmo hipercomputacional es el décimo problema de
Hilbert. Se señala que una condición matemática fundamental para estos algo-
ritmos es la existencia de una representación unitaria infinito dimensional irre-
ducible de álgebras de baja dimensión que admitan la construcción de estados
coherentes del tipo Barut-Girardello. Adicionalmente se presenta como caso
ĺımite del algoritmo propuesto sobre los potenciales Pöschl-Teller, el algoritmo
hipercomputacional sobre la caja de potencial infinita construido previamente
por los autores.
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Pöschl-Teller potentials based solution to the Hilbert’s tenth problem

Abstract
Hypercomputers compute functions or numbers, or more generally solve prob-
lems or carry out tasks, that cannot be computed or solved by a Turing ma-
chine. An adaptation of Tien D. Kieu’s quantum hypercomputational al-
gorithm is carried out for the dynamical algebra su(1, 1) of the Pöschl-Teller
potentials. The classically incomputable problem that is resolved with this hy-
percomputational algorithm is Hilbert’s tenth problem. We indicated that an
essential mathematical condition of these algorithms is the existence of infinite-
dimensional unitary irreducible representations of low dimensional dynamical
algebras that allow the construction of coherent states of the Barut-Girardello
type. In addition, we presented as a particular case of our hypercomputational
algorithm on Pöschl-Teller potentials, the hypercomputational algorithm on
an infinite square well presented previously by the authors.

Key words: hypercomputation, adiabatic quantum computation, Hilbert’s

tenth problem.

1 Introduction

In a memorable international mathematics congress in Paris in 1900, David
Hilbert proposed a series of twenty three problems, which according to their
purpose, would mark the future of mathematics in the 20th century. The
tenth problem consisted in finding an effective procedure, which would de-
termine whether or not a Diophantine equation had a non-negative integer
solution. The negative response to that problem was found 70 years later by
Yury V. Matiyasevich [2], who resolved Hilbert’s tenth problem, establishing
its equivalence with the Halting problem (the Turing machine incomputable
problem by antonomasia).

The hypercomputers compute functions or numbers, or more generally
solve problems or carry out tasks, that cannot be computed or solved by
a Turing machine (TM) [3, 4]. Since 2001, Tien D. Kieu has proposed
that even though Hilbert’s tenth problem is not computable in the realm of
Turing machines, it is possible after all to compute it [5, 6, 7, 8], but within
a new computation paradigm named quantum adiabatic hypercomputation
[9, 10]. Kieu’s proposal has generated much controversy because it is based
on arguments that are polemic on their own or are at least not unanimously
accepted, such as those that stem from hypercomputation [11, 12, 13, 14].
However, until now, no one has established well-founded arguments that show
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any fallacy in Kieu’s hypercomputational construction [8, 15, 16]. In this
sense, Kieu’s idea continues to be valid.

The purpose of this work is to present an algorithm of quantum hyper-
computation à la Kieu for Hilbert’s tenth problem, which contributes impor-
tant considerations about the role that infinite-dimensional unitary irreducible
representations (UIR) of dynamical algebras play in the hypercomputational
context. Since our algorithm solves a Turing machine incomputable problem,
it is not possible to make a comparison in terms of algorithmic complexity
between our algorithm and a possible Turing machine computable algorithm.
The way to proceed is to substitute Weyl-Heisenberg algebra gW−H carried
out in the quantum harmonic oscillator for non-compact Lie algebra su(1, 1)
carried out in the Pöschl-Teller potentials [17]. This work is a generaliza-
tion of previous work done by the authors about the hypercomputational
algorithm on an infinite square well [18, 19]. Here the hypercomputational
algorithm on an infinite square well is obtained as a particular case of our
hypercomputational algorithm on Pöschl-Teller potentials..

2 Hilbert’s Tenth Problem and Kieu’s Algorithm

Kieu’s idea is essentially to transform Hilbert’s tenth problem in the realm of
the theory of numbers, into a quantum problem in the realm of the spectral
theory and to resolve this problem using the adiabatic theorem of quantum
mechanics [20]. Kieu’s proposal consists in codifying a Diophantine polyno-
mial D(x1, x2, .., xk) via a certain quantum operator named HD which repre-
sents Hamiltonian’s role for a given quantum system. The issue of determining
if the Diophantine equation D(x1, x2, .., xk) = 0 has a non-negative integers
solution, is now reconsidered in determining if the quantum operator HD has
a zero-energy eigenvalue.

This new problem cannot be resolved directly and Kieu proposes to resolve
it in an indirect fashion by using the adiabatic theorem. This theorem affirms
that it is possible to control the instantaneous spectrum of a time depen-
dent operator, if the initial spectrum is known and if the operator involved is
the corresponding Hamiltonian of a Schrödinger equation. In other words, the
theorem suggests an understanding of something regarding the HD spectrum,
through interpolation from the known spectrum of a certain operator HI ; con-
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sidering the interpolating Hamiltonian of the form HA(t) = (1− s)HI + sHD,
with 0 ≤ s ≤ 1. Since the zero-eigenvalue of HD is justly the question, it
is natural to begin the quantum evolution with an eigenstate of HI associ-
ated with the zero-energy eigenvalue and to solve the Schrödinger equation
i~ ∂

∂t |Ψ(t)〉 = HA(t) |Ψ(t)〉 with the initial condition |Ψ(0)〉 = | ini〉 such
that HI | ini〉 = 0. Then, measuring the quantum state in t = T , correspond-
ing to |Ψ(T )〉 = | final〉 will obtain information on the lowest eigenvalue of
HD given that according to the adiabatic theorem, the state | final〉 is an
eigenvector of HD corresponding to the lowest energy eigenvalue.

Kieu’s algorithm incorporates the following elements: (i) A physical quan-
tum referent, (ii) An algebraic structure carried out on the physical quan-
tum referent, it is to say certain dynamical algebra, (iii) A coding scheme of
the Diophantine equation, (iv) The initiation of the quantum system, (v) A
quantum adiabatic evolution process, (vi) A measuring procedure of quan-
tum states, (vii) A halting criteria and (viii) A decoding scheme to determine
the solution to the Diophantine equation. The (one-dimensional) simple har-
monic oscillator (SHO) is the physical quantum referent selected by Kieu for
his algorithm, which represents the quantum extension of the classic harmonic
oscillator of mechanics [21]. In contrast to classical mechanics, in quantum
mechanics the fundamental notions are not Newton’s forces and Newton’s
equation, instead, they are Schrödinger’s energy and Schrödinger’s equation.
In quantum mechanics, energy is represented by an operator that operates
in a functional space of wave functions, and the spectral properties of this
operator determine the properties of the physical observables. The energy
operator is named Hamiltonian and is considered the engine of the quantum
evolution of systems. For the SHO, the Hamiltonian operator is defined as

H = a†a+ 1/2 ,

where a† represents the creation operator and a denotes the annihilation op-
erator. These operators act upon the space of quantum states |n〉 of the SHO
defined by

{|n〉 | n ∈ N = {0, 1, 2, . . . }} . (1)

The action of the annihilation operator on the vacuum and actions of the
creation and annihilation operators on a general state of (1) have the form

a | 0〉 = 0, a |n〉 =
√
n |n− 1〉 , a† |n〉 =

√
n+ 1 |n+ 1〉 , (2)
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and the commutation relations between the creation and annihilation opera-
tors which define the Lie algebra carried on the SHO are

[a, a†] = 1 , [a, a] = [a†, a†] = 0 . (3)

The number operator defined by way of the creation and annihilation
operators of the SHO is given as

N = a†a , N |n〉 = n |n〉 , (4)

and the coherent state, eigenvector of the annihilation operator of the algebra
is

|α〉 = e−
|α|2

2

∞
∑

n=0

αn

√
n!

|n〉 = e−
|α|2

2 eαa† | 0〉 α ∈ C ,

where a|α〉 = α |α〉 and the probability distribution of the discrete random
variable n of this coherent state is

Pn(α) = e−|α|2 |α|2n

n!
.

Given a Diophantine equation with k unknowns,

D(x1, . . . , xk) = 0 , (5)

Kieu provides the following quantum algorithm to decide whether this equa-
tion has any non-negative integer solution or not:

1. Construct a physical process in which a system initially begins from a state
that is a direct product of k coherent states

|ψ(0)〉 =

k
⊗

i=1

|αi〉 , (6)

and from which the system is submitted to the action of a Hamiltonian
HA(t) dependent on time over the interval [0, T ], for a time T

HA(t) =

(

1 − t

T

)

HI +

(

t

T

)

HD , (7)
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with the initial Hamiltonian

HI =

k
∑

i=1

(

a†i − α∗
i

)

(ai − αi) , (8)

and the final Hamiltonian

HD = (D(N1, . . . ,Nk))
2 . (9)

2. Measure or estimate (using the Schrödinger equation with the Hamiltonian
HA(t)) the maximum probability of finding the system in a particular multi-
particle state in the chosen time T

Pmax(T ) = max
| {n}〉

| 〈ψ(T ) | {n}〉 |2

= |〈ψ(T ) | {n}0〉|2 ,

where | {n}0〉 ( which is a direct product of k particular states,
⊗k

i=1

∣

∣n0
i

〉

)
possesses the maximum probability among the rest of the multi-particle
states.

3. If Pmax(T ) ≤ 1/2, increase T and repeat the previous steps.

4. If
Pmax(T ) > 1/2 (10)

then | {n}0〉 is the fundamental state of HD (it is assumed that there is no
spectral degeneration) and the following conclusion is obtained:
HD | {n}0〉 = 0, if and only if, (5) has a non-negative integer solution.

The Halting criteria (10) is established by the peak of maximum proba-
bility corresponding to the initial state (6), where, for any n and α

|〈α | n〉|2 = Pn(α) < 1/2 ,

and verifying that the probability that any excited state is not greater than
1/2 at any time.

In spite of the fact that Kieu does not explicitly mention it, the dynamical
algebra associated with the SHO is Weyl-Heisenberg gW−H algebra, established
by the commutation relations (3). This algebra has infinite-dimensional UIR
given by actions (2) over base (1).
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3 Algorithm à la Kieu on the Pöschl-Teller Potentials

In this section we present an adaptation of Kieu’s algorithm, which consists
in replacing Weyl-Heisenberg dynamical algebra corresponding to the SHO
by the dynamical algebra su(1, 1) related to the Pöschl-Teller (PT) potentials
[17].

The problem of finding the energy spectrum and the wave functions of a
particle of mass m confined inside the infinite square well 0 ≤ x ≤ πl, sub-
mitted to a barrier of infinite potential at both frontiers, has commonly been
one of the most elemental and illustrative problems of quantum mechanics.
The energy levels result being quantized and the wave functions correspond to
sinusoidal functions that satisfy the conditions imposed at the frontiers [17].
The previous situation is generalized for a situation in which the potential to
which the particle is submitted, is given by a family of continuously indexed
potentials of the PT type [17]

V PT
λ,κ (x) =

1

2
V0

(

λ(λ− 1)

cos2 x/2l
+
κ(κ − 1)

sin2 x/2l

)

, 0 ≤ x ≤ πl , (11)

where the continuous parameters λ, κ > 1 and the coupling constant V0 > 0.

The Hamiltonian

HPT = i2
~

2

2m

d2

dx2
+

~
2

8ml2

(

λ(λ− 1)

cos2 x/2l
+
κ(κ− 1)

sin2 x/2l

)

− ~
2

8ma2
(λ+ κ)2, (12)

where V0 = ~
2/4ml2 corresponds to a particle of mass m subject to the

interaction of the PT potentials [17]. The constant term that appears in the
Hamiltonian (12) depends on the particular choice of zero in the energy scale.

The spectrum of the energy values and their corresponding eigenstates are
the solutions of the Schrödinger’s equation HPTψ(x) = Eψ(x) for the Hamil-
tonian independent of time (12), subject to boundary conditions
ψ(0) = ψ(πl) = 0. The normalized eigenstates of the Schrödinger’s equa-
tion are given by [17]

Ψn(x) = [cn(λ, κ)]−1/2

(

cos
x

2l

)λ (

sin
x

2l

)κ

2F1

(

−n, n+ λ+ κ;κ+
1

2
; sin2

x

2l

)

,

where [cn(λ, κ)]−1/2 is a normalization factor given analytically when λ, κ are
positive integers, and 2F1 is a particular case of the generalized hypergeomet-
ric function.
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Pöschl-Teller potentials based solution to the Hilbert’s tenth problem

Now the wave function Ψn(x) is rewritten

Ψn(x) ≡ 〈x | η/2, n〉 , 0 ≤ x ≤ πl ,

where η = λ+κ+1 and Hamiltonian’s action over its normalized eigenvalues
is

HPT | η/2, n〉 = EPT
n | η/2, n〉 . (13)

The spectrum of values of the energy corresponding to the Hamiltonian of the
particle crucially depends on parameters λ, κ

EPT
n = ~ωen(λ, κ) , (14)

where ω = ~/2ml2 and en(λ, κ) = n(n+ λ+ κ).

Given the spectral structure of the PT potentials, it is possible to associate
a dynamical algebra based on a similar structure to the one developed for the
creation and annihilation operators in the case of the SHO. The generators
of the dynamical algebra are constructed based on the PT potentials, having
as a starting point the spectral structure defined in (14) and according to the
following criteria [17]

K+ | η/2, n〉 =
√

en+1(λ, κ) | η/2, n + 1〉 , (15)

K− | η/2, n〉 =
√

en(λ, κ) | η/2, n − 1〉 , (16)

K3 | η/2, n〉 = [en+1(λ, κ) − en(λ, κ)] | η/2, n〉 , (17)

where

en+1(λ, κ) = (n+ 1)(n + η) ,

en(λ, κ) = n(n+ η − 1) ,

en+1(λ, κ) − en(λ, κ) = (2n+ η) . (18)

The operators K+,K− and K3 are called creation, annihilation and Cartan
operators respectively, in analogy with the SHO. Those operators satisfy the
commutation relations of Lie algebra su(1, 1) given by

[K±,K3] = ∓2K± , [K−,K+] = K3 ,

which admits an infinite-dimensional UIR, given by (15), (16), and (17) that
is obtained from the actions of creation, annihilation and Cartan operators
over the base states defined in (13).

|50 Ingenieŕıa y Ciencia, volumen 2, número 4
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Based on the spectrum of the values of the energy defined in (14) and
(13), (15) and (16), the Hamiltonian (12) could be rewritten in the following
way

HPT = ~ωK+K− .

From (17) and (18) a new number operator is constructed given as

NPT | η/2, n〉 = n | η/2, n〉 , NPT = (1/2)(K3 − η) , (19)

where the eigenstates of the number operator NPT constitute an orthonormal
base for the Fock space

H = {| η/2, n〉 |n ∈ N} ,

where the ket | η/2, 0〉 is called the vacuum normalized state given that it
satisfies

K− | η/2, 0〉 = 0 , 〈η/2, 0 | η/2, 0〉 = 1 .

The existence of the dynamical algebra su(1, 1) associated to the PT po-
tentials, permits the construction of the generalized coherent states of Barut-
Girardello type. These states are the eigenvectors of the annihilation operator,
it is to say, K− | η/2, z〉 = z | η/2, z〉, where z ∈ C, and η is a positive integer.
The explicit form of these states is [22]

| η/2, z〉 =
{

Γ(η) |z|−(η−1) Iη−1(2 |z|)
}−1/2

∞
∑

n=0

zn

√

n! (η)n
| η/2, n〉 , (20)

where (η)n is Pochammer symbol (η)n = η(η + 1) . . . (η + n − 1), and Iν is
the modified Bessel function of first class. The probability distribution of the
discrete random variable n related to coherent state (20) is

PPT
n (η/2, z) =

{

Γ(η) |z|−(η−1) Iη−1(2 |z|)
}−1 |z|2n

n! (η)n
. (21)

From these elements, we can construct an algorithm à la Kieu with the
dynamical algebra su(1, 1), in the following way: instead of replacing each
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of the variables of the Diophantine equation (5) using (4) to construct the
Hamiltonian (9); these could be replaced by (19) to obtain

HPT
D =

(

D
(

NPT
1 , . . . ,NPT

k

))2
.

In accordance with (8), we construct the initial Hamiltonian HPT
I parting

from the creation and annihilation operators of su(1, 1) given in (15) and (16)

HPT
I =

k
∑

i=1

(K+i
− z∗i )(K−i

− zi) ,

as an associated fundamental state of the zero eigenvalue, the coherent mul-
tiparticle disentangled sate, written as

∣

∣ψPT(0)
〉

, constructed by means of
tensorial product from the one-particle coherent states given in (20)

∣

∣ψPT(0)
〉

=

k
⊗

i=1

| ηi/2, zi〉 .

Finally, in accordance with (7), the new Hamiltonian for the evolution
takes the form

HPT
A (t) =

(

1 − t

T

)

HPT
I +

(

t

T

)

HPT
D . (22)

All of the Hamiltonians involved in Kieu’s algorithm and in our algorithm
on Pöschl-Teller potentials, are unbounded operators and is therefore nec-
essary in such hypercomputational quantum algorithms to use a version of
the adiabatic theorem for unbounded operators [23]. However, this technical
aspect is not very significant given that such algorithms fundamentally oper-
ate in the infrared section (low energies) of the energy spectrum and not in
the ultraviolet section (high energies). On other hand, recently a proof was
given that quantum adiabatic computation is equivalent to standard quan-
tum computation [24]. This equivalence generates no contradiction between
the hypercomputability of quantum adiabatic computation and the Turing
machine computability of standard quantum computation due to such proof
of equivalence is only valid for finite Hilbert spaces.
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A fundamental hypothesis to apply the adiabatic theorem is that the inter-
polating Hamiltonian must have a well-defined spectral gap during the entire
evolution. In other words, the evolution lines of their eigenvalues must not
cross each other, at least for the lowest eigenvalues. In the case of Kieu’s
algorithm, he has shown the existence of a spectral gap for the interpolating
Hamiltonian, therefore the adiabatic theorem could be applied even in the
case of unbounded infinite-dimensional operators [6]. It is possible to see that
Kieu’s demonstration of the existence of the spectral band does not depend
strongly on the type of dynamical algebra involved, and therefore, this demon-
stration continues to be valid for the case of the dynamical algebra su(1, 1) of
the Pöschl-Teller potentials. It means that we can use the adiabatic theorem
on the Hamiltonian (22).

Finally, in order to satisfy the Halting criteria (10) and due to PPT
0 (η/2, z)

> PPT
1 (η/2, z) > PPT

2 (η/2, z) . . . , for the probability distribution (21), it is
necessary to select zi and ηi values such that

|〈ηi/2, zi | n〉|2 = PPT
0 (ηi/2, zi) < 1/2 ,

which is valid for any value of ηi and zi > 1.1 .

4 A particular case: the infinite square well

As a particular case of our hypercomputational algorithm à la Kieu on the
Pöschl-Teller potentials, we obtain our hypercomputational algorithm on the
infinite square well (ISW) which was previously given in [18, 19].

For a particle with mass m trapped inside the infinite well 0 ≤ x ≤ πl,
the potential is obtained using a smooth approach wherein the parameters
λ, κ→ 1+ over interval [0, πl] on potential (11), and the Hamiltonian is

HISW = i2
~

2

2m

d2

dx2
− ~

2

2ml2
, (23)

could be derived from the Hamiltonian for the PT potentials (12), taking the
limit [17]

lim
λ,κ→1+

HPT = HISW .
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The spectrum of the values of the energy is obtained, likewise, taking the
limit

lim
λ,κ→1+

EPT
n = EISW

n = ~ωen(1, 1) ,

where en(1, 1) = n(n + 2). The eigenstates of the Hamiltonian (23) that
defines the ISW are also obtained as a particular case of the eigenvalues of
the defined Hamiltonian for the PT potentials according to

lim
λ,κ→1+

| η/2, n〉 = | 3/2, n〉 .

The explicit infinite-dimensional UIR of the dynamical algebra su(1, 1),
of the Fock space associated to the UIR and of the actions of the creation
and annihilation operators over the states of the Fock space, as well as the
number operator and the Barut-Girardello coherent state corresponding to
the ISW, are obtained by replacing η = 3 in the respective expressions of the
PT potentials. This way we obtain our algorithm à la Kieu on the infinite
square well.

5 Conclusions

It is inferred from what has been exposed that Kieu’s algorithm consists of
four basic parts: (i) Coding of the instance to solve Hilbert’s tenth problem,
(ii) Establishment of initial conditions, (iii) Evolution from an initial state to a
final stage, (iv) Setting of Halting criteria. Part (i) is founded upon a dynam-
ical algebra associated with the physical referent applied in the description
of the algorithm. Part (ii) is established based on the coherent states and
the ladder operators associated with the dynamical algebra of the physical
system. Part (iii) is based upon an adiabatic quantum computation regard-
ing unbounded Hamiltonians. Part (iv) requires certain properties from the
initial state based on the distribution of the probability of the coherent states
associated with the dynamical algebra.

In the present work we have carried out a variation on the parts (i), (ii)
and (iv) with respect to Kieu’s algorithm. The coding of a Diophantine equa-
tion D(x1, x2, .., xk) = 0 consists in substituting the k unknowns by certain
operators called number operators, represented by infinite-dimensional matri-
ces, whose spectrum is exactly the set of non-negative integers. Kieu’s idea is
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to take these number operators from the dynamical algebra Weyl-Heisenberg
gW−H of the quantum harmonic oscillator. Our idea has been to take these
number operators from the dynamical algebra su(1, 1) of the Pöschl-Teller po-
tentials. Similarly, Kieu’s idea consists in taking the initial state as a coherent
state of the oscillator. And the Halting criteria is based on the probability
distribution for this state. Our idea has been to consider the initial state as
the Barut-Girardello coherent state for su(1, 1) and the Halting criteria based
on its probability distribution.

Therefore, it is possible to construct other versions of Kieu’s algorithm,
supported by other quantum physical referents different to the quantum har-
monic oscillator, with different dynamical algebras, given that these new alge-
bras allow infinite-dimensional unitary irreducible representations from which
to construct Hamiltonian coders of Diophantine equations. A possible imple-
mentation of Kieu’s algorithm and of our algorithm implies a great challenge
in engineering and quantum technology that is not currently possible. There is
however the possibility of running numeric simulations of these hypercomput-
ing algorithms but in (classic) computers derived from Turing machines. Such
simulations imply truncations of the matrices originally infinite-dimensional,
which generates a weakening of the hypercomputational power of the algo-
rithms.
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