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Abstract
We propose a standard hybridizable discontinuous Galerkin (HDG) method to
solve a classic problem in fluids mechanics: Darcy’s law. This model describes
the behavior of a fluid trough a porous medium and it is relevant to the flow
patterns on the macro scale. Here we present the theoretical results of existence
and uniqueness of the weak and discontinuous solution of the second order elliptic
equation, as well as the predicted convergence order of the HDG method. We
highlight the use and implementation of Dubiner polynomial basis functions that
allow us to develop a general and efficient high order numerical approximation.
We also show some numerical examples that validate the theoretical results.
Keywords: Hybridizable discontinuous Galerkin methods; flow in porous media;
Dubiner’s basis; high order convergence.

Método HDG de orden superior con bases de
Dubiner para problemas de flujo elípticos

Resumen
En este artículo proponemos el uso del método de Galerkin discontinuo híbrido
(HDG) para resolver un problema clásico en mecánica de fluidos: la ecuación de
Darcy. Este modelo describe el comportamiento de un fluido a través de un medio
poroso y es relevante en el estudio de flujo a gran escala. Aquí presentamos algunos
resultados teóricos de existencia y unicidad de la solución débil y discontinua de
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ecuaciones elípticas de segundo orden, así como el orden de convergecia predicho
para el método HDG. Destacamos el uso e implementación de bases polinomiales
de Dubiner que nos permiten desarrollar aproximaciones numéricas generales y
de alto orden. Además mostramos ejemplos numéricos que validan los resultados
teóricos.

Palabras clave: Método de Galerkin discontinuo hibridizable; flujo en medio
poroso; bases de Dubiner; convergencia de alto orden.

1 Introduction

The study of flow processes on porous media has gained particular strength during
last decades. This area is relevant from the theoretical point of view but even
more when it is related to realistic applications, e.g. geological and environmental
sciences [1],[2],[3]. In such studies the construction of accurate mathematical
models leads to a better understanding of complex systems [4]. Further, the design
of accurate and strong mathematical numerical methods provide a suitable tool
in the cases when experimental result are not feasible.

We consider Darcy’s law for single phase flow over porous media. This
empirical model relates the pressure and the velocity of an incompressible fluid
through a porous medium. We remark that Darcy’s can be derived from the
Navier-Stokes equations via homogenization and it is valid for slow, viscous flow
(see [5],[3]).

Moreover, one of the current challenges on simulating fluid flow trough porous
media is related with the highly heterogeneity of the media, e.g. heterogeneous
reservoirs. Therefore, we focus on the numerical solution of the heterogeneous
and anisotropic case of Darcy’s law, as mentioned in [6],[7]. This is a general
framework from where we aim to extend classical mathematical results and the
application of novel numerical methods.

Let Ω ⊆ R2 be a bounded and simply connected domain with polygonal
boundary Γ. For a fluid velocity u and preasure p, we consider the second-order
elliptic mixed problem

u = −K∇p, in Ω, (1a)
div u = f, in Ω, (1b)
u · n = g, on Γ, (1c)

where K := K(x) is a symmetric and positive definite tensor that represents the
permeability of the media and n is the unit outward normal to Γ.

The given data include the flux source f ∈ L2(Ω) and the flow at the boundary
g ∈ H1/2(Γ). The problem (1) is the mixed formulation of Darcy’s law and
describes the single-phase flow through a porous media. The existence of the
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solution (u, p) ∈ H(div; Ω) × H1
m(Ω) of (1) is provided by the compatibility

condition and the uniqueness is guaranteed in the space

H1
m(Ω) :=

{
q ∈ H1(Ω) :

∫
Ω

q = 0

}
.

We propose the application of the Hybridizable Discontinuous Galerkin (HDG)
method to approximate the solution of (1). We refer to [8] for a general overview of
mixed methods applied to Darcy’s law. This area has been widely studied from all
fronts; many works during the last 20 years have shown progress in the numerical
approximation of the Darcy equation and other equations of fluid mechanics
using mainly the finite volume method and finite differences. The discontinuous
Galerkin methods (DG) have the advantage (when compared with classical finite
element methods) of allowing handling heterogeneous media and discontinuous
solutions. In [9] a discontinuous Galerkin method is proposed to solve the
Navier-Stokes problem using Raviart-Thomas elements and constitutes one of
the first approaches used to solve this equation based on its mixed formulation.
Also, in [10], the DG formulations to solve classic equations of fluid dynamics and
heat transfer are explained. An important drawback of classical DG methods is
the computational cost that involves the increasing number of degrees of freedom.

Furthermore, we remark the references [11],[12],[13],[14],[15] (among others),
for the use and study of discontinuous methods applied to more complex flow
problems.

The hybridizable discontinuous Galerkin methods are a family of DG methods
that allows to find the approximate solution by solving an equivalent system of
equations associated to the skeleton of the partition of the domain. We refer to
[16] and [17] for details about the HDG formulation. With respect to fluid base
problems, in [18] a detailed study of the HDG method is showed. They applied the
HDG method to problems associated with compressible fluids using Runge-Kutta
type methods as well as numerical differentiation for time-dependent problems.
More recently, we highlight some relevant results to solve the Stokes equation
and other fluid problems using HDG, in [19],[20],[21],[22]. However, many of
these papers lack a complete error analysis or only consider the case of constant
permeability. In general, the mathematical foundation of the HDG method, for
this kind of problems, has not been as studied as other DG-type methods. These
motivate us to work in this direction and it is the main contribution of this paper.

In this work we also want to exploit an advantage of the discontinuous Galerkin
method: the capability to obtain high order approximations. To these end we
present and implement the Dubiner polynomial basis, that allows us to work with
high order polynomials without additional processing of the scheme. The Dubiner
basis have been studied in [23] and [24].

ing.cienc., vol. 16, no. 32, pp. 33–54, julio-diciembre. 2020. 35|



A High-Order HDG Method with Dubiner Basis for Elliptic Flow Problems

The paper is organized as follows. In Section 2 we give some of the main
ideas of the HDG method. In Section 3 we show a complete error analysis of
the HDG method applied to the problem (1). Finally, in Section 4 the Dubiner
basis are briefly commented and in Section 5 we discuss two classical numerical
tests that reflects the super-convergence of the HDG scheme even in the case of
heterogenities and anisotropies.

2 The hybridizable discontinuous Galerkin method

Let Th be a regular triangulation of Ω̄ with elements K of diameter hK and let
us define h := max

K∈Th
hK the mesh size. We denote by Eh the set of all faces

in the triangulation, and by EI and EΓ the set of interior and boundary faces,
respectively. We use the standard notation for Sobolev spaces L2(Ω),H1

0(Ω), etc.
We want to approximate the solution (u, p) of (1) with discrete functions

(uh, ph) in the space Vh ×Qh defined by

Qh :=
{
qh ∈ L2

0(Ω) : qh|K ∈ Pr(K) ∀K ∈ Th
}
,

Vh :=
{
vh ∈ [L2(Ω)]2 : vh|K ∈ [Pr(K)]2 ∀K ∈ Th

}
,

where L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
and Pr(K) is the set of polynomials in K

with total degree less or equal than r.
To derive the hybridizable discontinuous Galerkin (HDG) formulation of (1)

we introduce two new unknowns p̂ and û. These new unknowns are usually called
numerical fluxes and can be interpreted as single-valued approximations of p and
u over Eh, respectively.

For the numerical fluxes we use the following spaces defined only at the faces
of the triangulation

Wh :=
{
q ∈ L2(Eh) : q|e ∈ Pr1(e),∀e ∈ Eh

}
,

Rh :=
{
v ∈ [L2(Eh)]2 : v|e ∈ [Pr2(e)]2,∀e ∈ Eh

}
.

We write (·, ·)Th :=
∑
K∈Th(·, ·)K and 〈·, ·〉∂Th :=

∑
K∈Th〈·, ·〉∂K where (·, ·)K

and 〈·, ·〉∂K denotes the usual inner products in L2(K) and L2(∂K), respectively.
From now on we will assume that K|K is a continuous tensor and define

Λ−1
K,M := max

x∈K
{max{λ(x) : λ(x) is an eigenvalue of K−1(x)}},

Λ−1
K,m := min

x∈K
{min{λ(x) : λ(x) is an eigenvalue of K−1(x)}},
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thus by the Rayleigh-Ritz Theorem (a.k.a Min-Max theorem) we know that

Λ−1
K,m‖w‖

2
L2(K) ≤

(
K−1w,w

)
K
≤ Λ−1

K,M‖w‖
2
L2(K) ∀w ∈ R2.

Now, calling Λ−1
M := maxK∈Th Λ−1

K,M and Λ−1
m := minK∈Th Λ−1

K,m, we also have

Λ−1
m ‖w‖2L2(Th) ≤

(
K−1w,w

)
Th
≤ Λ−1

M ‖w‖L2(Th) ∀w ∈ R2. (2)

Finally, to obtain a weak formulation of problem (1) in the discrete spaces, we
multiply it by convenient test functions and use Green’s formulas to get:

Problem P1
G. Find (uh, ph, û, p̂) ∈ Vh × Qh × Rh × Wh such that for all

(vh, qh) ∈ Vh ×Qh it holds

(K−1uh,vh)Th − (ph,divhvh)Th + 〈vh · n, p̂〉∂Th = 0,

−(uh,∇hqh)Th + 〈û · n, qh〉∂Th = (f, qh)Th .

Here the expressions∇h and divh means the gradient and the divergence restricted
to each element, respectively.

The main goal of the hybridizable methods is to write the Problem P1
G in terms

of one of the numerical fluxes, let us say p̂ (since it has less number of degrees of
freedom than û). To that end we define the relation between the numerical fluxes
given by

û · n = uh · n + ε(ph − p̂), (4)

for some non-negative ε > 0, called stabilization parameter and defined over Eh.
Using (4) in Problem P1

G and Green’s identity, we get the following problem.

Problem P2
G. Find (uh, ph, p̂) ∈ Vh ×Qh ×Wh such that for all (vh, qh, µ) ∈

Vh ×Qh ×Wh it holds

(K−1uh,vh)Th − (ph,divhvh)Th + 〈vh · n, p̂〉∂Th = 0,

(divhuh, qh)Th + ε〈ph − p̂, qh〉∂Th = (f, qh)Th ,

〈uh · n + ε(ph − p̂), µ〉∂Th = 〈g̃, µ〉∂Th ,

where g̃ is the extension by zero of the boundary condition g over Eh. The last
equation is introduced to impose the continuity of the normal trace of û over the
interior faces and the boundary condition.

Lemma 2.1. Problem P2
G has a unique solution (uh, ph, p̂) ∈ Vh ×Qh ×Wh.

ing.cienc., vol. 16, no. 32, pp. 33–54, julio-diciembre. 2020. 37|



A High-Order HDG Method with Dubiner Basis for Elliptic Flow Problems

Proof. It is enough to show that if (uh, ph, p̂) ∈ Vh × Qh ×Wh is the solution
to the corresponding homogeneous problem, then it has to be the trivial (zero)
solution. So let us consider f ≡ 0 and g̃ ≡ 0. If we take vh = uh, qh = ph and
µ = p̂ in Problem P2

G, we get after adding the resulting equations and simplifying,

(K−1uh,uh)Th + ‖ε1/2(ph − p̂)‖2L2(∂Th) = 0,

thus, using (2)

Λ−1
m ‖uh‖2L2(Th) + ‖ε1/2(ph − p̂)‖2L2(∂Th) ≤ 0,

from where,

uh = 0, in Th,
ph − p̂ = 0, on ∂Th.

Finally, from the first equation of Problem P2
G, using the Green’s identity and the

fact that uh = 0 in Th we obtain

(vh,∇ph)Th = 0,

so taking vh = ∇ph and considering that ph ∈ L2
0(Ω), since ph ∈ Qh, we concluthe

that ph = 0 in Th and therefore p̂ = ph = 0 on ∂Th.

Now that we have proved that Problem P2
G has a unique solution, we can

introduce the main advantage of the HDG method (over traditional DG methods)
and reduce Problem P2

G to a problem only over the skeleton. To this end we
introduce the concept of local solver.

2.1 The local solvers

Notice that if the numerical flux p̂ is known, it is possible to find the solution
(uh, ph) ∈ Vh × Qh at each K ∈ Th. In other words, if we consider p̂ as a given
data then (uh, ph) ∈ Vh ×Qh satisfies the following local problem.

Problem PLoc. Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh
it holds

(K−1uh,vh)K − (ph,divvh)K = −〈vh · n, p̂〉∂K ,
(divuh, qh)K + ε〈ph, qh〉∂K = ε〈p̂, qh〉∂K + (f, qh)K .

Problem PLoc can be written in terms of operators as

L(p̂, f) := (uh, ph),

and it is called local solver. It is easy to prove that the following result holds.
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Theorem 2.1. The solution (uh, ph) ∈ Vh×Qh of Problem PLoc can be written
as: ph := pλh + pfh, uh := uλh + ufh with p̂ = λ. Where λ is the solution of the
problem

A(λ, µ) = b(µ), ∀µ ∈Wh, (7)

with A : Wh ×Wh → R and b : Wh → R defined as

A(λ, µ) := 〈uλh · n + ε(pλh − λ), µ〉∂Th ,

b(µ) := 〈g̃ − ufh · n− εp
f
h, µ〉∂Th .

Theorem 2.1 is a direct consequence of replacing Problem PLoc in the third
equation of Problem P2

G when (uλh, p
λ
h) and (ufh, p

f
h) are the solutions of the local

solvers L(λ, 0) and L(0, f), respectively. This theorem shows that the numerical
flux p̂ can be found as the solution of a simpler problem (7) (since this problem
is formulated only on the skeleton), and then the main unknowns (uh, ph) can
be recovered from the local solver Problem PLoc. This is the main feature of the
HDG methods and shows how the degrees of freedom are reduced.

3 Error analysis

In this section we show the error analysis of the solution of Problem P2
G based

in projection operators on the approximation spaces Qh and Vh. We follow the
ideas of [25] given for the Laplace problem.

Let ΠQ : H1
m(Th)→ Qh and ΠV : [H1(Th)]2 → Vh be the projections over the

spaces Qh y Vh, such that for each K ∈ Th we have

(ΠVu,vh)K = (u · vh)K ∀vh ∈ [Pr−1(K)]2,

(ΠQp, qh)K = (p, qh)K ∀qh ∈ Pr−1(K), (8)
〈ΠVu · n + εΠQp, µ〉∂K = 〈u · n + εp, µ〉∂K ∀µ ∈ Pr(e), e ∈ ∂K

with (u, p) ∈ [H1(Th)]2 ×H1
m(Th).

The following lemma is a standard result and we refer to [26] for the proof.

Lemma 3.1. Let r ≥ 0, ε > 0 and (ΠVu,ΠQp) the HDG projectors defined
in (8). If (u, p) ∈ [Hr+1(Th)]2 × Hr+1(Th) then there exists a constant C > 0
independent of the mesh size, such that

‖ΠQ(p)− p‖L2(Th) ≤ Chr+1
[
|p|Hr+1(Th) + |div(u)|Hr(Th)

]
‖ΠV (u)− u‖[L2(Th)]2 ≤ Chr+1

[
|u|[Hr+1(Th)]2 + |p|Hr+1(Th)

] (9)
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Let us now define the projection errors given by

εuh := ΠVu− uh, εph := ΠQp− ph and εp̂h := PW p− p̂

where PW is the L2 orthogonal projection over the space Wh. These projection
errors satisfy the problem given in the following lemma.

Lemma 3.2. The errors (εuh , ε
p
h, ε

p̂
h) ∈ Vh ×Qh ×Wh are such that:

(K−1εuh ,vh)Th − (εph,divhvh)Th + 〈vh · n, εp̂h〉∂Th = (K−1 (ΠVu− u) ,vh)Th

(divhε
u
h , qh)Th + 〈ε(εph − ε

p̂
h), qh〉∂Th = 0

〈εuh · n + ε(εph − ε
p̂
h), µ〉∂Th = 0

for all (vh, qh, µ) ∈ Vh ×Qh ×Wh.

Proof. We just show the first equation, since the rest follow by similar arguments.
First notice that the exact solution of (1) satisfies

(K−1u,vh)Th − (p,divhvh)Th + 〈vh · n, p〉∂Th = 0

for all vh ∈ Vh. Then by the definition of the projectors in (8) and taking into
account that divvh ∈ Pr−1(K) and the definition of PW , we get

(K−1ΠVu,vh)Th − (ΠQp,divhvh)Th + 〈vh · n, PW p〉∂Th
= (K−1 (ΠVu− u) · vh)Th , (10)

so if we subtract from (10) the first equation of Problem P2
G we get

(K−1εuh ,vh)Th − (εph,divhvh)Th + 〈vh · n, εp̂h〉∂Th = (K−1 (ΠVu− u) ,vh)Th .

Corollary 3.1. The errors (εuh , ε
p
h, ε

p̂
h) ∈ Vh ×Qh ×Wh satisfy

(K−1εuh , ε
u
h)Th + 〈ε(εph − ε

p̂
h), εph − ε

p̂
h〉∂Th = (K−1(ΠVu− u), εuh)Th . (11)

Proof. This is a direct consequence of Lemma 3.2, taking vh = εuh , qh = εph and
µ = −εp̂h · n, adding the resulting equations.

Remark 3.1. Using Holder’s inequality, inequality (2) and Corollary 3.1 we can
find error estimates for εuh in Th and εph − ε

p̂
h on ∂Th; however we still need to

bound the error εph in Th. In order to accomplish this we use a classic duality
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argument. Let us define the auxiliary problem: Given Θ ∈ L2(Ω), find (σ, z) ∈
H(div; Ω)×H1

m(Ω) such that

K−1σ = ∇z in Ω,

div σ = Θ in Ω,

σ · n = 0 on Γ.

(12)

This problem has a unique solution according with the Lax-Milgram theorem.
Even more, if we assume that Ω is convex then we have that z ∈ H2(Ω) and
‖z‖H2(Ω) ≤ Creg‖Θ‖L2(Ω), where Creg > 0 is independent of the mesh size.
Therefore, σ ∈ [H1(Ω)]2 and ‖σ‖[H1(Ω)]2 ≤ Creg‖Θ‖L2(Ω).

Lemma 3.3. For all zh ∈ Qh we have

(εph,Θ)Th = (K−1(u− uh),ΠVσ − σ)Th + ((u−ΠVu),∇z −∇zh)Th

Proof. The proof of this lemma is very similar to the proof of Lemma 4.1 in
[25].

Corollary 3.2. Let (σ, z) ∈ H(div; Ω)∩[H1(Ω)]2×H1
m(Ω)∩H2(Ω) be the solution

of (12). We have that

‖εph‖L2(Th) ≤ C

 sup
Θ∈L2(Ω)

Θ6=0

‖ΠVσ − σ‖[L2(Th)]2

‖Θ‖L2(Th)

+ sup
Θ∈L2(Ω)

Θ6=0

inf
zh∈Qh

‖∇z −∇zh‖[L2(Th)]2

‖Θ‖L2(Th)

 ‖ΠVu− u‖[L2(Th)]2

(13)
and therefore

‖εph‖L2(Th) ≤ C‖ΠVu− u‖[L2(Th)]2 . (14)

Proof. The first inequality follows by Lemma 3.3, Cauchy-Schwarz inequality,
inequality (2) and Corollary 3.1:

|(εph,Θ)Th | ≤ Λ−1
M ‖u− uh‖[L2(Th)]2‖ΠVσ − σ‖[L2(Th)]2

+ ‖u−ΠVu‖[L2(Th)]2‖∇z −∇zh‖[L2(Th)]2

≤ Λ−1
M

(
‖u−ΠVu‖[L2(Th)]2 + ‖εuh‖[L2(Th)]2

)
‖ΠVσ − σ‖[L2(Th)]2

+ ‖u−ΠVu‖[L2(Th)]2‖∇z −∇zh‖[L2(Th)]2
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≤ Λ−1
M ‖u−ΠVu‖[L2(Th)]2‖ΠVσ − σ‖[L2(Th)]2

+
(Λ−1

M )2

Λ−1
m

‖u−ΠVu‖[L2(Th)]2‖ΠVσ − σ‖[L2(Th)]2

+ ‖u−ΠVu‖[L2(Th)]2‖∇z −∇zh‖[L2(Th)]2 ,

and taking supremum we get (13).
For the inequality (14) we need to bound the right hand side of (13). First we

take r = 0 in (9) (applied to the auxiliary problem) to obtain

‖ΠV σ − σ‖[L2(Th)]2 ≤ Ch
[
‖σ‖[H1(Th)]2 + ‖z‖H1(Th)

]
.

Now, since ∇zh = 0 and z ∈ H2(Ω) with ‖z‖H2(Ω) ≤ Creg‖Θ‖L2(Ω), we can
conclude

‖εph‖L2(Th) ≤ C

 sup
Θ∈L2(Ω)

Θ6=0

‖σ‖[H1(Th)]2 + ‖z‖H1(Th)

‖Θ‖L2(Th)

 ‖ΠVu− u‖[L2(Th)]2

≤ C‖ΠVu− u‖[L2(Th)]2 .

Finally, we complete the error analysis with the following theorem.

Theorem 3.1. Let (u, p) be the solution of (1) and (uh, ph) that of Problem P2
G.

If (u, p) ∈ [Hr+1(Th)]2 × Hr+1(Th) then there exists C > 0 independent of the
mesh size, such that

‖p− ph‖L2(Th) ≤ Chr+1
(
‖p‖Hr+1(Th) + ‖u‖[Hr+1(Th)]2

)
‖u− uh‖[L2(Th)]2 ≤ Chr+1

(
‖p‖Hr+1(Th) + ‖u‖[Hr+1(Th)]2

)
Proof. By the triangle inequality, inequalities (14) and (9), we have

‖p− ph‖L2(Th) ≤ ‖ΠQp− p‖L2(Th) + ‖ΠQp− ph‖L2(Th)

≤ Chr+1
(
‖p‖Hr+1(Th) + ‖u‖[Hr+1(Th)]2

)
.

Likewise, using (11), (2) and (9) we have

‖u− uh‖[L2(Th)]2 ≤ ‖ΠVu− uh‖[L2(Th)]2 + ‖ΠVu− u‖[L2(Th)]2

≤ Chr+1
(
‖p‖Hr+1(Th) + ‖u‖[Hr+1(Th)]2

)

|42 Ingeniería y Ciencia



Manuela Bastidas, Bibiana Lopez-Rodriguez and Mauricio Osorio

We have proved that the HDG method is a super-convergent method for
polynomial approximations of order r, since optimal convergence order is obtained
for both p and u.

In the following section we present the high order polynomial basis that we
will use in Section 5 to show the super convergence in the numerical tests.

4 Dubiner basis

To construct the spaces Vh and Qh over triangles in R2 or tetrahedrons in R3

we use the Dubiner Basis. This basis is an orthogonal and complete set of
functions that generates spaces of polynomials of order r > 0. The Dubiner
basis were proposed in [23]. For triangular elements, the approximation space on
the standard reference triangle is chosen as in [24].

Let Kref be the reference triangle given by

Kref := {(x, y)|0 ≤ x, y;x+ y ≤ 1}

and P γ,θr be the Jacobi polynomials of order r defined as in [27]. The Dubiner
polynomials are defined as

ψmn(ξ, η) := 2mP 0,0
m

(
2ξ

1− η
− 1

)
(1− η)

m
P 2m+1,0
n (2η − 1) (15)

for (ξ, η) ∈ Kref . The polynomials (15) constitute an orthogonal basis of the space
PM (Kref) with cardinality d1 = (M + 1)(M + 2)/2. We use the notation ψj(ξ, η)
instead of ψmn(ξ, η) with 1 ≤ j ≤ d1, for any arbitrary bijection j ≡ j(n,m) (see
[28]).

For example, the first tree non-normalized Dubiner basis functions on Kref are

ψ1(ξ, η) = ψ00(ξ, η) = 1

ψ2(ξ, η) = ψ01(ξ, η) = 3η − 1

ψ3(ξ, η) = ψ10(ξ, η) = 4ξ + 2η − 2

For the case of vector valued functions in R2, we choose a set of basis functions
{φj}

d2
j=1, with d2 = 2d1, defined in such a way that

φj(ξ, η) := ψj(ξ, η)~e1 and φd1+j(ξ, η) := ψj(ξ, η)~e2, j = 1, . . . , d1,

where ~ei, i = 1, 2 are the canonical basis of R2.
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Finally, for the space Wh we just need an one-dimensional basis, so we choose
the Legendre polynomials at the reference edge I := [−1, 1] (also to take advantage
of their orthogonality property). These polynomials can be defined as

φj(x) := P 0,0
n (x),

with cardinality d1−1 and where j and n correspond to the bijection j = j(n,m)
mentioned before.

5 Numerical examples

In this section we propose two numerical examples and test the behavior of the
HDG method when one uses Dubiner basis for high order approximations. Our
test cases are manufactured examples, here we construct the suitable source
and boundary conditions for a given analytical solutions. In the first test
case we consider an homogeneous porous media and in the second test case an
heterogeneous domain.

In the test cases and for a fixed order of approximation r, the convergence
orders respect to the refinement of the mesh are calculated as follow

αL2 :=
log
( ‖p−ph‖L2(Ω)

‖p−ph/2‖L2(Ω)

)
log(2)

and αH1 :=
log
( ‖u−uh‖[L2(Ω)]2

‖u−uh/2‖[L2(Ω)]2

)
log(2)

.

We also check the development of the HDG method with respect to the order
of approximation. The convergence orders respect to the polynomial order r are
calculated as follow

βL2 :=

log

(
‖p−prh‖L2(Ω)

‖p−pr+1
h ‖L2(Ω)

)
log

(
‖p−pr+1

h ‖L2(Ω)

‖p−pr+2
h ‖L2(Ω)

) ≈ 1 and βH1 :=

log

(
‖p−prh‖H1(Ω)

‖p−pr+1
h ‖H1(Ω)

)
log

(
‖p−pr+1

h ‖H1(Ω)

‖p−pr+2
h ‖H1(Ω)

) ≈ 1

we denote prh the discontinuous approximate pressure ph when using a polynomial
basis of order r.

5.1 Test case 1. Homogeneous case.

Consider an homogeneous domain Ω := [0, 1]2 with constant permeability K = I
(the identity matrix). The source term f , the flow at the boundary g and the
flow velocity u are chosen such that the pressure is

p(x, y) := sin (2πx) sin (2πy) .
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In Table 1 we show the data for the five triangulations used in the numerical
test.

Table 1: Data for the five meshes used in the numerical examples.

Mesh h nElements nEdges
1 5.000E-01 16 20
2 2.500E-01 64 88
3 1.250E-01 256 368
4 6.250E-02 1024 1504
5 3.125E-02 4096 6080

Figure 1 shows the analytical and approximate solution of (1) and Problem P2
G,

respectively. The approximated solution in Figure 1 is computed using Dubiner
basis of order five (r = 5) and over a mesh with 4096 elements. In Figure 1 we
also show the comparison of the magnitude of the velocity computed analytically
and using the same HDG method with r = 5.

Our aim is to show via numerical examples the convergence of the error
proposed in the section 3 for the scalar and vectorial unknowns. Table 2 shows
the history of convergence for the first five order approximations and using five
different meshes. As expected, the history of convergence, in Table 2, shows that
the solution ph converges to p and uh converges to u with order hr+1.

We display in Figure 2 the convergence of the error for the higher order
approximations. In Figure 2 the error is displayed in a log-log scale. The reference
lines correspond to the expected orders of convergence, i.e. h5 and h6 respectively.
Accordingly with the theory presented in Section 3, in this example we showed
the super convergence of the HDG method for smooth solutions.

We finally test the behavior of the HDG method in terms of the approximation
order r. As expected, the rates of convergence βL2 and βH1 goes to one when r
increase and this result validate the HDG method as a p-method.

5.2 Test case 2. Non-Homogeneous case.

For this test case, we take as a reference the numerical example introduced in
[29]. Consider the domain Ω := [0, 1]2 and the coefficient

K(x, y) := (2 + sin(x) sin(y))I.

We take data so that p(x, y) := sin(xy) is the exact solution of (1) and in Figure 3
we show the permeability and the source function f .

ing.cienc., vol. 16, no. 32, pp. 33–54, julio-diciembre. 2020. 45|



A High-Order HDG Method with Dubiner Basis for Elliptic Flow Problems

Figure 1: The exact solution for the pressure (p) (top-left) vs the HDG solution (p5h)
(top-right) and the exact solution for the magnitude of the velocity (u) (bottom-left) vs
the HDG solution (u5

h) (bottom-right).
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Figure 2: Convergence of the error for the test case 2. Approximation of order 4 (left)
and approximation of order 5 (right).
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Table 2: History of convergence of the error with respect to the mesh size h
(Test case 1).

r h ‖p− ph‖L2(Ω) αL2 ‖u− uh‖[L2(Ω)]2 αH1

1 5.00E-01 6.73E-01 - 2.04 -
2.50E-01 1.49E-01 2.18 4.53E-01 2.18
1.25E-01 3.97E-02 1.90 1.17E-01 1.95
6.25E-02 1.01E-02 1.98 2.95E-02 1.98
3.13E-02 2.53E-03 2.00 7.41E-03 1.99

2 5.00E-01 6.27E-02 - 1.95E-01 -
2.50E-01 2.36E-02 1.41 5.59E-02 1.80
1.25E-01 3.04E-03 2.95 7.17E-03 2.96
6.25E-02 3.84E-04 2.99 9.01E-04 2.99
3.13E-02 4.81E-05 3.00 1.13E-04 3.00

3 5.00E-01 4.20E-02 - 1.09E-01 -
2.50E-01 2.10E-03 4.32 5.46E-03 4.32
1.25E-01 1.37E-04 3.94 3.47E-04 3.97
6.25E-02 8.64E-06 3.99 2.18E-05 3.99
3.13E-02 5.42E-07 4.00 1.37E-06 4.00

4 5.00E-01 1.52E-03 - 4.95E-03 -
2.50E-01 1.81E-04 3.07 4.21E-04 3.56
1.25E-01 5.80E-06 4.97 1.33E-05 4.98
6.25E-02 1.82E-07 4.99 4.18E-07 5.00
3.13E-02 5.71E-09 5.00 1.31E-08 5.00

5 5.00E-01 9.22E-04 - 2.27E-03 -
2.50E-01 1.12E-05 6.37 2.74E-05 6.37
1.25E-01 1.80E-07 5.96 4.33E-07 5.98
6.25E-02 2.83E-09 5.99 6.78E-09 6.00
3.13E-02 4.43E-11 6.00 1.06E-10 6.00
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Table 3: History of convergence of the error with respect to the order r (Test case 1).

h k ‖p− ph‖L2(Ω) βL2 ‖u− uh‖[L2(Ω)]2 βH1

5.00E-01 3 3.97E-02 6.15E+00 1.10E-01 3.38E+00
4 1.01E-02 1.17E-01 2.78E-02 2.24E-01
5 2.53E-03 6.72E+00 6.97E-03 3.49E+00

2.50E-01 3 3.04E-03 7.61E-01 6.49E-03 9.24E-01
4 3.84E-04 9.86E-01 8.15E-04 8.93E-01
5 4.81E-05 8.79E-01 1.02E-04 9.50E-01

1.25E-01 3 1.37E-04 8.28E-01 3.19E-04 9.40E-01
4 8.64E-06 9.81E-01 2.00E-05 9.18E-01
5 5.42E-07 9.10E-01 1.25E-06 9.59E-01

6.25E-02 3 5.80E-06 8.61E-01 1.20E-05 9.52E-01
4 1.82E-07 9.83E-01 3.76E-07 9.32E-01
5 5.71E-09 9.26E-01 1.18E-08 9.67E-01

3.13E-02 3 1.80E-07 8.83E-01 3.93E-07 9.60E-01
4 2.83E-09 9.86E-01 6.16E-09 9.42E-01
5 4.45E-11 9.37E-01 9.62E-11 9.72E-01

Figure 3: Heterogeneous permeability for test case 2 (left) and the corresponding source
term f (right).
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Figure 4 shows the analytical and approximate solution of (1) and Problem P2
G,

respectively. Here we use the same mesh as in the first test case. In other words,
the approximated solution in Figure 4 is computed using Dubiner basis with r = 5
and over a mesh with 4096 elements. In this test case we also use the meshes in
Table 1.

Figure 4: The exact solution for the pressure (top-left) vs the HDG solution of order
5 with h =3.12E-02 (top-right) and the exact solution for the magnitude of the velocity
(bottom-left) vs the HDG solution of order 5 with h =3.12E-02 (bottom-right).

In the case of the heterogeneous media we also get the super-convergence of
the HDG method. The history of convergence of the error for the second test
case is shown in Table 4. As expected, the solution ph converges to p and uh
converges to u with order hr+1. This result proves the super-convergences of the
HDG method that makes this method a suitable strategy to solve problems over
more complex domains or with complex characteristics.
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Table 4: History of convergence of the error for the test case 2.

k h ‖p− ph‖L2(Ω) αL2 ‖u− uh‖[L2(Ω)]2 αH1

1 5.00E-01 5.07E-03 0.00 1.06E-02 0.00
2.50E-01 1.25E-03 2.02 2.57E-03 2.04
1.25E-01 3.10E-04 2.01 6.32E-04 2.02
6.25E-02 7.73E-05 2.00 1.57E-04 2.01
3.13E-02 1.93E-05 2.00 3.90E-05 2.01

2 5.00E-01 2.49E-04 0.00 7.80E-04 0.00
2.50E-01 3.20E-05 2.96 9.33E-05 3.06
1.25E-01 4.08E-06 2.98 1.14E-05 3.04
6.25E-02 5.14E-07 2.99 1.40E-06 3.02
3.13E-02 6.45E-08 2.99 1.74E-07 3.01

3 5.00E-01 1.27E-05 0.00 3.38E-05 0.00
2.50E-01 8.13E-07 3.96 2.06E-06 4.03
1.25E-01 5.13E-08 3.99 1.27E-07 4.02
6.25E-02 3.22E-09 3.99 7.92E-09 4.01
3.13E-02 2.02E-10 4.00 4.93E-10 4.00

4 5.00E-01 5.90E-07 0.00 1.50E-06 0.00
2.50E-01 1.83E-08 5.01 4.51E-08 5.05
1.25E-01 5.74E-10 4.99 1.38E-09 5.03
6.25E-02 1.80E-11 4.99 4.28E-11 5.01
3.13E-02 5.97E-13 4.92 1.39E-12 4.94

5 5.00E-01 2.46E-08 0.00 6.94E-08 0.00
2.50E-01 3.96E-10 5.96 1.03E-09 6.08
1.25E-01 6.33E-12 5.97 1.57E-11 6.04
6.25E-02 2.16E-13 4.87 4.08E-13 5.27

In Figure 5 the convergence of the error for the highest order approximations
is shown. We highlight that for the case r = 5 and the finest mesh the precision
of the approximation reaches the precision of the numerical integration and the
error computation is not accurate enough, however the firs three meshes allow us
to obtain the predicted convergence rate.

Finally, the convergence of the error with respect to the order of the
approximation is displayed in Table 5. With this we conclude that the HDG
method presented could be also use as a p-method by fixing a mesh and increasing
the order r, even in the case with heterogeneity in coefficients.
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Figure 5: Convergence of the error for the test case 2. Approximation of order 4 (left)
and approximation of order 5 (right).

Table 5: History of convergence of the error for the test case 1.

h k ‖p− ph‖L2(Ω) βL2 ‖u− uh‖[L2(Ω)]2 βH1

5.00E-01 3 3.10E-04 1.01E+00 6.32E-04 8.30E-01
4 7.73E-05 9.69E-01 1.57E-04 1.01E+00
5 1.93E-05 9.66E-01 3.90E-05 1.01E+00

2.50E-01 3 4.08E-06 9.97E-01 1.14E-05 8.70E-01
4 5.14E-07 9.68E-01 1.40E-06 9.97E-01
5 6.45E-08 9.90E-01 1.74E-07 1.01E+00

1.25E-01 3 5.13E-08 9.90E-01 1.27E-07 8.95E-01
4 3.22E-09 9.74E-01 7.92E-09 9.93E-01
5 2.02E-10 9.97E-01 4.93E-10 1.01E+00

6.25E-02 3 5.74E-10 9.89E-01 1.38E-09 9.11E-01
4 1.80E-11 9.78E-01 4.28E-11 9.92E-01
5 5.97E-13 1.17E+00 1.39E-12 1.12E+00

3.13E-02 3 6.33E-12 9.88E-01 1.57E-11 9.23E-01
4 2.16E-13 9.90E-01 4.08E-13 9.99E-01
5 3.82E-13 1.30E+01 6.64E-13 7.93E+00
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6 Conclusions

We have introduced the hibridizable discontinuous Galerking method (HDG) as a
suitable idea for constructing high order approximations to the solution of Darcy’s
law. We proved the existence and uniqueness of the solutions of the global and
local problems that defines the HDG method. Furthermore, we proved the error
estimates for the numerical solutions by using projection operators.

In the numerical results we show the super-convergence of the HDG method.
We considered two test cases with homogeneous and heterogeneous media and
use Dubiner basis to construct high-order approximations. With this we showed
that the HDG method is a suitable strategy to solve problems over heterogeneous
domains, e.i. with non-constant coefficients.

We highlight that the application of such type of DG methods is vast. Further
work goes in the direction of a-posteriori error estimates and real-life applications
including computational efficiency tests. In terms of the applicability of this
method we propose as future work the use of HDG methods with Dubiner basis on
more complex domains, including random media and non-regular geometries. In
other words, the extension of the numerical analysis in this paper can be extended
to two-phase flow and real-life applications as fracture model simulations, CO2

storage and environmental pollution.
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