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A Predictive Model for the Anisotropy Index of Semi-Coke Derived from the Properties of
Colombia's Eastern Cordillera Coals

Abstract

This study developed a theoretical model for the determination of the
Coke Anisotropy Quotient (CAQ) of semi-coke from the properties of its
precursor coal. This is an useful parameter to define the resistance and
reactivity of semi-coke in the blast furnace. For 36 semi-coke samples,
a textural analysis was performed alongside a fluidity test to determine
the real CAQ. The main textures observed were: isotropic and circular
for high volatile bituminous coals (HVB); lenticular and fine ribbons for
the medium volatile bituminous coals (MVB); and medium and thick
ribbons for the low volatile bituminous coals (LVB). The CAQ varied in a
range from 1 to 11. A principal component analysis (PCA) and multiple
regression to discriminate the importance of certain coal properties, in
determining the CAQ to be recognized and to estimate parameters of the
mathematical model. The statistical analysis suggested that CAQ can
be best predicted from the fluidity, volatile matter, and Ro of the parent
coals. The veracity of this model result was then tested using a second
dataset from Poland. This work optimizes the usefulness of standard
datasets in the prediction of CAQ's offering a means of quality control
that could be implemented in Colombian coke production.

Keywords: Coal; coke anisotropy quotient (CAQ); semi-coke;
Principal Component Analysis (PCA); textural component; Colombia
Eastern Cordillera.

Modelo predictivo del indice de anisotropia del
semicoque a partir de las propiedades de los
carbones de la Cordillera Oriental de Colombia

Resumen

En esta investigacion se desarrollé6 un modelo teérico para la determinacion
del Cociente de Anisotropia del Coque (CAQ) del semicoque a partir
de las propiedades de su carbon precursor. El CAQ permite definir la
resistencia y la reactividad del semicoque en el alto horno. Usando material
residual de las pruebas de fluidez se realizé6 un analisis textural para
determinar el CAQ real sobre 36 muestras de semicoque. Las principales
texturas observadas para los carbones bituminosos fueron: isotropicas
y circulares para los de alta volatilidad (HVB); cintas lenticulares y
finas para los de media volatilidad (MVB); y cintas medias y gruesas
para los de baja volatilidad (LVB). El CAQ varié en un rango de 1
a 11. Analisis de componentes principales (PCA) y regresion multiple
permitieron reconocer la importancia de ciertas propiedades del carbén
para determinar el CAQ. El analisis estadistico sugirié que el CAQ puede
predecirse mejor a partir de la fluidez, la materia volatil y el Ro de los
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carbones precursores. Este modelo fue validado a través de la comparacion
con datos reales de carbones de Polonia. Este trabajo proporciona un
medio de control de calidad que podria implementarse en la producciéon
de coque colombiano.

Palabras clave: Carbones; Coeficiente de anisotropia del coque (CAQ);
semicoque; componentes texturales; Cordillera Oriental de Colombia.

1 Introduction

Coke is the main product of the thermal treatment (heat flow) of
bituminous coals, brought about by the destructive distillation or pyrolysis
of organic matter in an oven or in some specific natural geological conditions
[1,[2]. As coal is a naturally heterogeneous material, it is necessary to
determine its physical-chemical and optical properties to define potential
uses and to predict its technological behavior [3],[4]. Coke is used in
different industries due to its high calorific value, carbon content, fusible
macerals (reactive organic matter), and high degree of purity [5]. Steel
manufacturing requires coke with high-quality standards, for example, in
order to provide heat, a reducing environment and a permeable agent
in the blast furnace during the steel production, coke with a Resistance
after Reaction with CO2 (CSR) values > 65% [5],[6], and a Reactivity
Index (CRI) between 20 and 30%, is required [7]. According to [7] these
coke quality indexes are dependent on the precursor coal (on 70%), the
preparation of the sample and the furnace operating conditions during coke
production (the remaining 30%). Given that, in Colombia, the value of
coal and coke exports in the second quarter of 2017 contributed 1,549.81
million dollars FOB (Free On Board) to the country’s budget, according to
the Ministry of Mines and Energy, it is necessary to carry out studies to
improve the quality of Colombian coke and so that international standards
can be met.

Textural coke analysis is an optical technique used internationally to
determine coke quality from the rank, coal type, rheologic properties and
blend composition of the parent coals as well as the temperature and
time of coalification in the furnace (e.g. [1I,[3],[8],[9],|10], [11],[12],[13],
among others). The description of the optical textures, defined in the
ASTM D5061-19 Standard for metallurgical coke, is based on the shape,
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size, and optical birefringence and is used to determine the CAQ, an
indicator of coke reactivity [14]. The sample preparation and analysis of
optic textures, however, is an expensive and long process that could be
optimized with the use of a theoretical model. The CAQ is calculated with
Equation (1f), as proposed by [I5], and is commonly used to quantify the
relationship between coal rank and coke anisotropy. The CAQ allows a
quantitative value to be assigned to qualitative properties determined from
the optical description of coke textures. It’s an accepted fact that resistance
and reactivity of globally-recognized CRI and CSR quality indices which
characterize coke behavior in a blast furnace [I4],[I6]. The description
of morphological texture has also allowed the development of predictive
models associated with the fibrous index (Wx), from the linear relation
between the CSR and the Wx/Ro ratio [13]. Furthermore, previous studies
have demonstrated that coke reactivity has an inverse relation with CAQ
values, while their resistance has a directly proportional relation [14].

Hower and Lloyd [17] suggest that it is possible to produce semi-coke
using the product of the Gieseler plastometry test. They find that flow
textured developed in high volatile bituminous coals (HVB), indicating that
the temperature and exposure time of heat increases the anisotropy of the
semi-coke. Similar optical textures of coke are produced at a temperature
of about 500 °C in the plastometer (semi-coke) and could be used to the
petrographic description under reflected light [I8]. For this reason, we
use the plastometry test to determine the rheological properties of coal
according to the ASTM D2639 / D2639M-19 Standard (fluidity) (using
a Gieseler plastometer) and obtain semi-coke samples. In this test, the
coal is subjected to a maximum temperature of 600°C and leaves a solid
residue, considered here as semi-coke. The semi-coke material is a viable
resource for the purpose of research and development on a laboratory scale
given that the conditions required for the observation of optical textures
are readily achievable [18],[19]. Currently, there is not enough scientific
data on firstly, the optical textures of coke and semi-coke produced from
Colombian coals and secondly, on how these textures are related to both
the final coke quality and other variables used during the coking process.

This study aimed to develop a predictive mathematical model for the
CAQ of semi-coke using the textural characteristics of semi-coke and several
physical-chemical variables of its parent coal. The parent coal utilized
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here is used in blends for coke production in the Eastern Cordillera of
Colombia. Our model is defined from the results of a multivariate statistical
technique known as a Principal Components Analysis (PCA) and multiple
linear regressions. This method generates an Equation to predict CAQ
from coal characterization tests by comparing theoretical results with real
values obtained from the textural description of semi-coke samples. This
provides the first predictive mathematical model for Colombian coke and
semi-coke that can be used as a tool for quality control, improving the
cost-effectiveness and efficiency of industrial production.

2 Materials and methods

This work comprises an analysis of 36 Colombian unitary coals extracted
from central Colombia within different sections of the Eastern Cordillera (6
samples from Norte de Santander, 19 samples from Cundinamarca, and the
remaining 11 samples from Boyaca state; Figure [1)). These samples were
taken predominantly from bituminous coals of the Cretaceous Guaduas
and Catatumbo formations, commonly used in the coke production. They
were provided by COQUECOL S.A. and due to confidentiality reasons, the
exact location of the samples cannot be disclosed, though their approximate
locations are given in Figure[I] The unitary coals have been characterized
and classified by their rank, according to the volatile matter (dry and
mineral-matter free), following the ASTM D388-19a standard.

Before the evaluation of the textural components of the semi-coke
samples, the parent unitary coals were characterized to identify the
relationship between their texture and the quality of the coals used in
coking industries. The tests follow the ASTM standard procedures,
including the proximate analysis, total sulfur content, mean reflectance
of vitrinite (Ro), maceral composition, and plastometry (fluidity) (Table
. These tests are conventionally used in the coal and coke industries as
they are a quick and cost-effective way to define the technological behavior
of these materials. After obtaining the semi-coke, through heating the
coal to a temperature of approximately 500°C (i.e. a plastometry test),
the specimens were prepared for textural analysis by making a polished
probe that can be analyzed with an optical microscope. For the sample
preparation, we follow the ASTM D2797 / D2797M-11a standard, except
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for the crushing process, where instead material was passed through sieve
number 6, taking care to preserve the optical textures of the samples.
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Figure 1: Approximate location of the studied coal samples in the Eastern
Cordillera. A) General map of South America highlighting Colombia. B) General
map of Colombia with Norte de Santander, Boyaca and Cundinamarca states. C)
Norte de Santander, D) Boyacé, E) Cundinamarca; showing the municipalities
where coals were extracted.
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Table 1: Standard methods used for laboratory testing of coal. A: Proximate
analysis + total sulfur (moisture, ash, volatile matter, fixed carbon, total
sulfur). B: Samples preparation, estimation of losses due to air drying, crushing,
homogenization, quartering, elaboration of polished sections. C: Mean reflectance
of vitrinite under a microscope with photometer, identification of coal quality
and mixtures quantification by reflectograms. D: Discrimination of the maceral
composition of the coal. E: Plastometry of unitary coals in order to determine
the fluidity of the coal and semi-coke using the Gieseler plastometer.

Test Standard reference (ASTM)
A D3173 / D3173M-17a; D374-12(2018); D3175-20; D3172-13; D4239-18el
B D2797/D2797M-11a
C D2787-20
D D2799-13
E D2639,/D2639M-19

The textural component analysis of the semi-coke followed the ASTM
D506119 standard . A microscopic point-count analysis of the textural
components was conducted under reflected light conditions using polarized
light and a mineral plate to produce interference colors (gypsum plate).
A total of 1000 count points were used to calculate the CAQ using the
Equation proposed by [15] (Equation (|1))). From the description of these
textures, i.e. their shape, optical birefringence, and size, the relation
between the reactive/non-reactive components of coal and the operating
conditions in the furnace during the coke production, can be determined.

CAQ =(a+2b+3c+4d+---+nm)/(a+b+c+d+---+m) (1)

In this equation: a, b, ¢, d,..., nm represent, in percentages, the
observed coke textures. a: isotropic, b: incipiently anisotropic, c, d,
and e: anisotropic textures in fine, medium, and coarse circular. f, g,
h: anisotropic textures in fine, medium, and coarse lenticular shapes, and
i, j, k anisotropic texture in fine, medium, and coarse ribbons, respectively,
thus transferring qualitative optical characteristics to a single quantitative
value.
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We applied the PCA, this statistical technique allow us to reduce the
dimensionality of the input dataset using the information contained in
their respective covariance or correlation matrix [20]. Thus, is possible to
identify the dominant parameters that produce the most variance within
the dataset. This allows to generate a new system of coordinates generated
through linear transformations applied on the original dataset. In this new
system, the largest variance (or total variance) is resolved by the first,
second-third component and so on [2I]. The PCA let us to reduce the
number of dimensions of a high-dimensional dataset where the variance
of the original dataset is preserved. Components derived from the PCA
are useful to detect input variables that exhibit more relations with the
variable to be calculated. These input variables are used as predictors using
multiple linear regression methods. Thus, finally the PCA was carried out
using R programming language [22] on the physical-chemical properties of
the precursory coal (Table [2): residual moisture (Mr), ash content (A),
sulfur (S), volatile matter (Vm), mean reflectance of the vitrinite (Ro),
log(fluidity), and the CAQ defined with the textural description.

This method has been successfully used to define geological factors
related to environmental pollution [23|, depositional environments and
sediment supply [20], improvement of accuracy in geodetic data [24], and
geochemical prospection [25]. However, for Colombian coals and cokes is
the first time that this methodology is applied. Scatterplot matrix and/or
correlograms are useful to show variables highly correlated with the CAQ
including Volatile matter, fixed carbon, log(fluidity) and Ro. The presence
of these highly correlated variables is technically called multicollinearity
and it can cause problems in the estimation of the coefficients, residuals
and predictions of the multiple linear regression model.

According [26], the previously mentioned problems in the multiple linear
regression approach can be solved using the PCA. The goal of this last is
to define a new set of variables from linear combinations of the original set
such that the variance of the original set is preserved and the correlation
between the new variables is minimized [2I]. Computationally, the PCA
defines the new set of variables using the eigenvectors and eigenvalues of
the spectral decomposition of the covariance matrix of the original dataset
[21].
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Table 2: Percentage ranges derived from coal characterization and real CAQ
for semi-coke. M: moisture, A: ash, Vm: volatile matter, C: fixed carbon, S:
total sulfur, Fm: maximum fluidity, DDPM: dial revolutions, Ro: reflectance of
vitrinite, R: reactive macerals, NR: non-reactive, CAQ: quotient of anisotropy,
AD: as determined basis, D: dry basis, Dmmf: dry mineral matter free basis.

Code M(AD) A(D) Vm(Dmmf) C(D) S(D) Fm(DDPM) log(Fm) Ro R NR CAQ

101 0.55 2.67 18.61 78.9 0.47 41 1.61 1.64 76.65 23.35 10.13
201 0.47 6.46 22.15 7222 0.72 41 1.61 147 7294 27.06 9.21
102 0.48 7.05 24.61 69.5 0.55 1334 3.13 1.3 7422 2578 854
103 0.65 9.32 36.32 57.03 1.18 43998 4.64 0.89 65.28 34.72 4.87
104 0.75 4.69 23.31 72.69  0.46 518 2.71 146 71.61 2839 817
105 0.8 10.44 27.86 63.89  0.51 21443 4.33 129 712 288 8

106 1.22 3.71 26.24 70.69  0.46 2549 3.41 1.31 6832 31.68 7.1

107 1.15 5.2 33.69 6249 045 17199 4.24 1 73.76  26.24 6.54
202 0.9 3.56 36.01 61.4 0.66 43757 4.64 095 73.52 26.48 6.02
203 0.87 5.81 31.96 63.61 0.7 37702 4.58 1.08 65.34 34.66 7.61
301 0.53 5.94 21.65 73.2 0.44 197 2.29 1.57 7248 27.52 6.98
302 0.67 8.39 31.48 62.08  0.98 6247 3.8 113 77.06 2294 6.48
204 0.79 5.93 22.56 72.34  0.52 111 2.05 1.37  81.73 1827 895
108 0.79 2.91 32.87 6491  0.51 19356 4.29 1.03 759 241 7.66
109 0.83 8.67 36.67 57.21  0.98 35972 4.56 094 717 283 525
110 0.85 5.55 37.47 58.66  0.61 21789 4.34 088 764 23.6 4.52
111 1.03 8.52 20.87 71.71 0.5 193 2.29 1.61 776 224 876
112 0.64 8.68 23.35 69.34  0.46 1097 3.04 147 774 226  9.18
113 0.35 6.8 33.66 61.33  0.63 7246 3.86 094 725 275 4.2

114 0.17 5.74 15.22 79.36  0.54 0 0 1.82 735 265 10.02
115 0.69 9.99 18.68 7237  0.58 0 0 15 73.0 270 10.16
205 0.17 8.05 20.24 72.62  0.73 28 1.45 1.57 728 272  9.18
206 0.53 8.11 30.97 62.63  1.55 21711 4.34 1.06 815 185 7.1
207 0.56 6.59 36.47 58.81  0.95 37110 4.57 091 763 23.7 7

208 0.57 6.97 25.43 68.59 14 1398 3.15 126 795 205 7.77
303 1.8 3.58 36.03 61.33  0.84 4133 3.62 0.85 76.6 234 427
304 1.68 5.91 41.93 54.23  0.79 45031 4.65 0373 802 198 273
305 2.92 4.11 44.85 52.63  0.45 48588 4.69 061 79.8 202 1.06
306 121 8.05 35.81 5846  0.72 43769 4.64 091 785 215 593
116 0.78 8.09 24.32 68.9 0.65 1133 3.05 137 776 224  7.58
117 1.03 11.31 21.5 68.65  0.91 100 2 151  69.5 30.5 9.4

118 0.92 10.47 25.00 66.37  0.54 841 2.92 1.25 795 205 742
119 1.06 9.18 24.4 67.88  0.84 708 2.85 1.31 696 304 7.13
209 0.99 6.4 25.26 69.38  0.76 357 2.55 115 738 262 743
210 0.63 5.81 23.38 71.55  0.94 346 2.54 1.14 759 241 755
211 0.79 6.54 20.64 73.56  0.71 16.00 1.20 121 76.65 23.35 9.11
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3 Results
3.1 Coal characterization

The studied coals varied from high volatile bituminous (HVB) coals to
low volatile bituminous (LVB) coals according to the ASTM D388-19a
standard. M contents ranged from 0.17 to 2.92%, A from 2.67 to
11.31%, Vm from 15.22 to 44.85%, C from 52.63 to 79.36%, S from
0.44 to 1.55, log(fluidity) from 0 to 2.29 and Ro from 0.60 to 1.89
(Table , which together indicate variations in coal rank. These samples
were predominantly composed of macerals of the vitrinite group, with
lesser abundances of the inertinite group and the liptinite group (Figures
,B). Variations in mineral content were also observed, notably in clay
minerals, quartz and pyrite, as is frequent in Colombian Cretaceous coals
[27],128],]29],[30],[31]. The reactive macerals, which are of interest here
as they generate the optical textures for defining CAQ, included vitrinite,
liptinite, and ~1/3 of the semifusinite present in the samples (65.28 to
81.73%). The non-reactive components present were inertinite, mineral
matter, and the remaining 2/3 of the semifusinite, which kept its original
shape through the coking process (18.27 to 34.72%). The presence of
significant amounts of macerals of the inertinite group could be related to
the generation of a coke with maximum strength and stability [4], however,
the CAQ value depends only on the textures formed from the reactive
macerals.
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Figure 2: Maceral composition of coal and semi-coke textures. A) HVB coal
with macerals of the liptinite group (dark gray) in a vitric matrix (medium
gray). B) MVB coal with macerals of the inertinite group (white to light
gray). C) Development of isotropic texture, medium ribbons, and pores. D)
Fine circular texture. E) Development of medium to coarse ribbons and organic
inerts (conserving the original texture from coal). F) Lenticular texture. G)
Development of coarse ribbons. V: vitrinite, Lp: liptinite, I: inertinite, C:
Circular, Cf: fine circular, Lt: lenticular, Io: organic inert, Ii: inorganic inert,
P: pore, Rm: medium ribbon, Rec: coarse ribbon.
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Petrographic descriptions are a conventional tool for identifying
coal blends and are especially useful for identifying differences between
samples with similar physicochemical parameters, such as M, Vm, and
A. These parameters have different technological behaviors during the
coke production [4]. For the preparation of coal blends, typically low
quantities of coke fines, anthracite, and petroleum coke are introduced
to improve the final coke resistance [32]. However, in this case, the Ro
values and the maceral composition corroborated the presence of unitary
coals with a single Gaussian curve in their reflectograms as well as the
absence of external material in all coal samples. This highlight that organic
petrography is the most reliable technique for defining the coal rank and
type.

The mean values for each type of coal are presented in Table [3] It can
be noted that across samples, properties related to coal rank have similar
values (i.e. Vm, C, fluidity, and Ro), while A, S, reactive, and non-reactive
properties show greater variability between samples. This indicates that
these latter properties are influenced by the depositional environment of
the parent coal and are relatively independent of the coalification process.
It therefore evident that CAQ depends predominantly on properties that
are indicative of coal rank. Fluidity changes with coal oxidation, however,
indicate that the length of time and conditions of parent coal storage can
influence the final quality of the coke, modifying the CAQ values and
reducing their resistance [33]. The classification results show that there
are 8 samples of unitary LVB, 14 samples of MVB, and 14 samples HVB
coals.

Table 3: Summary of properties according to the coal classification. M: moisture,
A: ash, Vm: volatile matter, C: fixed carbon, S: total sulfur, Ro: reflectance of
vitrinite, R: reactive macerals, NR: non-reactive macerals, AD: as determined
basis, D: dry basis, Dmmf: dry mineral matter free basis.

Type M(AD) A(D) Vm(Dmmf) C(D) S(D)  log(Fm) Ro R NR

LVB  0.17-1.03 2.67-11.31  15.22-21.65  68.65-79.36  0.44-0.91 0-2.29 1.21-1.89  65.34-77.6  22.4-34.66
MVB 0.47-1.22 3.71-10.47  22.15-30.97  62.63-72.69 0.46-1.55 0.46-1.55 1.06-1.46 65.28-79.5  20.5-34.72
HVB 0.35-2.92 2.91-9.32 31.48-44.85  52.63-64.91 0.45-1.18 0.45-1.18 0.60-1.13 68.32-81.73 18.27-31.68
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3.2 Semi-coke textures

A number of features were identified through the optical texture analysis
of the semi-cokes. Isotropic textures show in the 98.8% of the HVB coals
specimens with 44.85% of Vm (Dmmf basis; Figure ), whereas fine,
medium and coarse circular textures in the 79.5% of the HVB samples with
33.66% of the Vm (Dmmf basis; Figures ,E). Fine, medium, and coarse
lenticular textures were identified in 94% of the MV B samples with 21.65%
of Vm (Dmmf basis; Figure 2F). Fine, medium and coarse ribbon textures
exist in 93.3% of the LVB samples, with percentages of Vm of 15.22%
(Dmmf basis; Figure ) The presence of organic inert reflects the high
amounts of macerals of the inertinite group and oxidized vitrinite, however,
these components are not related with the development of optical textures
and therefore were not taken into account in the anisotropy evaluation [3].
The percentages of each texture allowed the calculation of the CAQ value,
where samples of parent coals with low volatile content produced semi-cokes
with elongated and fluid ribbon textures (Figures ,G), characterized by
a CAQ greater than 8.5. Samples from precursor coals with intermediate
volatile content produced semi-cokes with interlaced and lenticular textures
with a smaller size than the ribbon ones produced for the LVB samples
(Figure ) In this case, the CAQ values were between 6.5 and 8.5. Finally,
parent coals with a high volatile matter content produced semi-cokes with
dispersed and isolated circular textures with sizes less than 2 microns.
These samples were less anisotropic and had values of CAQ less than 6.5.
The observed variation in CAQ), according to the coal rank, is consistent
with other studies where increased anisotropy was found in high-rank
coals used in coke production. This suggests anisotropy is useful for the
characterization of product quality in the coke production line [34].

3.3 Statistical model

The biplot in Figure [3| represents the two-dimensional projection of all
samples analyzed, along with a set of arrows representing the contribution
of each variable. The length and position of these arrows provide useful
information about the correlation and association between the input
variables, including the CAQ. A biplot shows two variables, the dots in
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this plot represent the principal component scores of samples, while the
vectors represent the loadings of variables. The further away these vectors
are from origin, they have more influence on those components. Vector
angles also hint at how variables correlate with one another: a small angle
implies positive correlation, a large one suggests negative correlation, and
a 90° angle indicates no correlation between two variables.

The correlation between the i-th input variable and the first and second
components depends on the proximity of the arrows to the corresponding
component axis. The variables associated with the first component are
mostly are aligned to the horizontal axis. All tests performed in this
study are included as variables in the PCA, except for the maceral
composition. The latter variable is excluded because firstly, it is not a
conventional analysis in the coking industry and secondly, while it provides
information on the proportion of reactive and non-reactive components,
is not associated with the capacity for generating textures in semi-cokes
during combustion.

From visual inspection of the biplot, the variables related to component
1 are the CAQ, C, Ro, Vm, and log(fluidity); whereas M does not show a
clear correlation with the component axes. The importance of M on the
CAQ is not very clear, probably owing to the fact that this parameter does
not depend exclusively on the coalification process and that some geological
factors, such as fracturing, faulting, and migration of groundwater, can also
alter this value. The A and S contents are associated with component 2,
implying that these variables are not as related to the CAQ. This is likely
due to the dependency of this variable on the coal rank [3]. Both S and A
content are influenced by the depositional environment of coal and they do
not develop optical textures during the coking process.

| 122 Ingenieria y Ciencia



E. Romero-Salcedo, S. Manosalva-Sanchez, W. Naranjo-Merchan, O. Garcia-Cabrejo, M.

Bermudez, J. Gomez-Neita

28

8 26
M

= Ro

CA

Component 2

log(fluidity)

24

31

23

Component 1

Figure 3: Biplot graph for the PCA of coal properties and semi-coke (CAQ). The
data are projected into a coordinate system whereby the horizontal and vertical
axes of the biplot are the components that capture the most variation in the data,
components 1 and 2, respectively. The length of arrows indicates the importance
of that variable for the respective component.

As CAQ is the interest parameter, it is necessary to define which
variables will be considered for the formulation of the mathematical model.
From the correlogram (Figure , it is clear that there is a directly
proportional relationship between CAQ and Ro and CAQ and C content,
whereas there is a inversely proportional relationship between CAQ and
Vm and between CAQ and log(fluidity), suggesting a dependency of CAQ
on these variables. The width of the ellipses in the correlogram also show
a great degree of dispersion between CAQ versus M, CAQ versus S, and
CAQ versus A, indicating a lack of dependence of CAQ on these input
variables. The variables that do not show a strong dependency on CAQ
are not considered in the mathematical model.
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3.4 Mathematical model

Mathematical methods for predicting coke quality have been implemented
from coal blend characterization using Gaussian functions [35], additive law
[36] and the random forest method [37]. Conclusive findings, however, are
not yet available to determine the CAQ employing coal properties. The
PCA and the correlogram showed that the Vm, C, log(fluidity), and Ro
are parameters that exhibit good correlation with CAQ and, therefore,
they should be the variables to consider in the definition of a predictive
mathematical model. These findings are in agreement with Morga et al.
[38], who found the coke micro-raman spectra has a linear relation with
the Vm, C and Ro.

The Vm and C are complementary variables that consequently provide
the same information about the precursory coal. As such, only Vm data is
utilized in the model. This parameter is selected as it is calculated directly
from a lab test and does not depend on other parameters (e.g. A, S and M),
unlike the C. The correlation values between the Vm and Ro also suggest
that these two variables provide similar data about the coal (Figureld)). The
Ro, however, is attained from a petrographical analysis and its variation
depends only on the organic matter's thermal maturity during coalification.
Ro is therefore the more reliable test for coal rank determination and
the only method that allows the existence of unitary coals or coal blends
to be realized. The same level of accuracy is not attained with Vm as
this parameter could also integrate an inorganic volatile product of some
mineral phases, due to the high temperatures during the test.

Multiple linear regressions allowed the dependence of CAQ on the
parent coal properties to be theoretically modelled (Equation ) These
properties include Vm, log(fluidity), and Ro. To define this mathematical
model, each variable is accompanied by a coefficient that quantifies the
importance of every independent variable in the definition of the CAQt
(theoretical model, Equation ((2))).

CAQr = 14.216 — 0.320Vm + 0.490log( fluidity) + 0.389Ro  (2)

where CAQr is the theoretical CAQ index, Vm is the volatile matter
(dry mineral matter free) and Ro is the average reflectance of vitrinite.
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4 Discussion

This research supported the hypothesis that the formation of the coke
optical textures occurs at a temperature as low as 500°C, as proposed by
[18]. The optical properties of semi-coke, attained at lower temperatures
and shorter heating times in a laboratory, could therefore be equally
useful for fluidity analysis in unitary bituminous Colombian coals. Organic
petrography is a methodology applied in the coking industry for predicting
coke strength and reactivity as well as reconstructing the coal blend, burnt
coke, among others [39]. While these experimental findings are important
for recognizing the potential of semi-cokes for textural analysis, it should
be recognized that some maceral properties only develop in temperatures
between 500 and 700 °C, causing some properties, such as Ro, to vary
through the heating process [34]. Isotropic and circular textures, however,
are already formed at low temperatures, ~400°C, allowing the CAQ to
be determined [40]. This preliminary investigation into the viability of
semi-coke as a CAQ indicator is the starting point for further research into
methods for optimizing scarce resources in the assessment of coke quality.
Furthermore, it opens up the possibility of testing new coke production
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procedures and optimizing coke quality and coal blending schemes in the
lab before moving to an industrial scale [35].

The PCA and the proposed model (Equation ), demonstrate that
the parent coal variables that influence the development of texture are the
Vi, log(fluidity) and Ro. There is statistical evidence that variables such
as M, A and S, do not affect the development of semi-coke textures and
do not determine the behavior of the anisotropy index (CAQ). Similarly,
the maceral content does not reflect variations in the CAQ as this property
is sensitive only to the proportions of reactive and non-reactive macerals,
therefore controlling only the quantity of reactions in the furnace but not
the type of coke textures that develop. These results most likely indicate
that CAQ is dependent on coal properties that relate to the coalification
processes (coal rank) [3]. The thermal history of the precursor coals must
therefore be the main factor that controls the quality of its derived coke.

A comparison between the theoretical and observed CAQ (Figure [5)
demonstrates that the proposed model captures most of the variation in
the CAQ dataset, and therefore can be used for predictive purposes. The
variation between the theoretical and observed statistical values was not
higher than 1, which means the theoretical model fits the data well with a
significance of 95%, reflecting the accuracy of this mathematical model.

Due to a confidentially agreement enforced by the private coal and
coke companies that supplied the data, a number of factors associated
with sample location could not be investigated. These included the
tectonic and burial history of the samples, their stratigraphic position
and proximity to magmatic activity. Likewise, the storage time of the
coal is unknown, generating uncertainty in the degree of oxidation the
samples had experienced, which affects the fluidity and optical textures
of the produced coke, as demonstrated by [33]. However, this does not
detract from the significance of the results in determining coke quality for
industrial purposes. The results of [16],[19],[41], and [42], suggest that there
is a relationship between the CAQ), the resistance and reactivity indexes of
coke and the parent coal, though additional factors could also be considered,
such as plasticity tests and the chemical composition of the residual ashes
[43].
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Figure 5: Comparison between observed and theoretical CAQ for the Colombian
semi-cokes. The trend indicates that the mathematical model fits the data using
a significance level of 95%

In order for a theoretical model to be validated, it needs to be tested
against other datasets. A unique dataset of coal characteristics and CAQ
values was published by [33]. Originally the data was used by the authors
previously mentioned to discriminate anisotropy of coke due to the effect
of weathering in 4 samples for three different phases. The information
of fresh samples belongs to [33] was used in this study for validating the
CAQ model. Figure [0] exhibits the relationship between the observed CAQ
for the Polish samples and the CAQ value calculated with the theoretical
model from this study. The mathematical model estimates CAQ values
for the Polish dataset that are within one standard deviation of their
true values. The differences between the modelled CAQ, based on the
Colombian dataset, and the observed Polish data could be explained by
several factors: e.g. due to differences in coal properties and geological
history or due to variations in the operating conditions and weathering
during storage. While the model does a good fit at predicting the dataset,
there is a possibility for improvement with the addition of new datasets.
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Figure 6: Comparison between observed and theoretical CAQ for Polish cokes.
The trend indicates that the mathematical model predicts these data within one
standard deviation (vertical line).

5 Conclusions

The residuals of a fluidity test allow us to identify coke optical textures at
low-temperature ranges in a controlled laboratory environment [I8]. The
anisotropy index CAQ, determined from optical textures of coke/semi-coke
[15] depend on several physical-chemical properties of the parent coal.
Utilizing a methodology for giving quantification to otherwise qualitative
data, allows comparison of optical texture with, for example, reactivity
and resistance indices. The proposed mathematical predictive model of the
CAQt depends on the values of the Vm, log(fluidity), and Ro (Equation
); indicating that CAQ depends mainly on the coal rank. The scatter
of the CAQ with other parameters such as: M, A, S, and maceral content
reflects the minimal significance of these parameters in the formation of
the coke and semi-coke textures.

Our results show the success of the CAQ model in fitting the Polish data
that indicates the veracity of the model and its more universal application
in the coal, coke, and steel industry. This mathematical model was
successful in predicting CAQ in a Polish dataset that was not used for
model calibration, highlighting the possibility for the model's applicability
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for coals and semi-cokes in other localities. It is recommended that future
works should investigate the properties of industrially-produced coke to
determine the anisotropy, resistance and reactivity indexes under different
temperature and heating-time conditions so that the textures obtained with
coke and semi-coke can be compared and used to corroborate the reliability
of this model for industrial use. The work also provides a useful method for
determining the relationship between resistance and the anisotropy index,
which could be used in the design of the coal blends during the coking
process.

Acknowledgements

This project was financed with resources from the "Fondo de Ciencia,
Tecnologia e Innovacion del Sistema General de Regalias FCTel-SG"
assigned to the Boyaca state within the call 733 of 2015 as a Master
scholarship for the first author. We thank the Government of Boyaci;
the Coquecol Group, exporter of coking coals for the support and supply
of the study samples; the Programa de Maestria en Ciencias de la Tierra of
the Universidad Pedagdgica y Tecnoldgica Colombia - Seccional Sogamoso;
and the CDT Mineral laboratory for the technical and logistical support
received. We thanks to the Universidad Pedagogica y Tecnolégica de
Colombia (UPTC) (Project DIN-SGI-2666, provide to MAB). Finally, we
would like to thank Rebekah Harries for their valuable comments, detailed
review and to improve the readability of the final manuscript.

References

[1] R. Gray, Chapter 9 - Coal to Coke Conversion, H. Marsh, 1. A.
Edwards, R. Menendez, B. Rand, S. West, A. J. Hosty, K. Kuo,
B. McEnaney, T. Mays, D. J. Johnson, J. W. Patrick, D. E. Clarke,
J. C. Crelling, and R. J. Gray, Eds. Butterworth-Heinemann, 1989.
https://doi.org/10.1016 /B978-0-408-03837-9.50014-2

[2] B. Kwiecinska and H. Petersen, “Graphite, semi-graphite, natural
coke, and natural char classification—iccp system,” International Journal
of Coal Geology, vol. 57, mno. 2, pp. 99 - 116, 2004. https:
//doi.org/10.1016/j.coal.2003.09.003

ing.cienc., vol. 16, no. 32, pp. [109, , julio-diciembre. 2020. 129|


https://doi.org/10.1016/B978-0-408-03837-9.50014-2
https://doi.org/10.1016/j.coal.2003.09.003
https://doi.org/10.1016/j.coal.2003.09.003

A Predictive Model for the Anisotropy Index of Semi-Coke Derived from the Properties of

Colombia's Eastern Cordillera Coals

3]

4]

[5]
[6]

7]

18]

19]

[10]

[11]

[12]

1130

N. Choudhury, D. Mohanty, P. Boral, S. Kumar, and S. K. Hazra,
“Microscopic evaluation of coal and coke for metallurgical usage,” Current
Science, vol. 94, no. 1, pp. 74-81, 2008. |http://www.jstor.org/stable/

24102031 [TTT} [T2T} [122} [126]

I. Suérez-Ruiz and C. R. Ward, Chapter 2 - Basic Factors Controlling
Coal Quality and Technological Behavior of Coal, 1. Su’arez-Ruiz and
J. C. Crelling, Eds. Burlington: Elsevier, 2008. |https://doi.org/10.1016/
B978-0-08-045051-3.00002-6| [T17], [T18] [I20]

T. Larry, Coal Geology. John Wiley and Sons Ltd, England, 2002.

V. Gulyaev, V. Barskii, and A. Rudnitskii, “European quality requirements
on blast-furnace coke,” Coke and Chemistry, vol. 55, no. 10, pp. 372-376,
2012. [https://doi.org/10.3103/S1068364X12100043

M. Diez, R. Alvarez, and C. Barriocanal, “Coal for metallurgical coke
production: predictions of coke quality and future requirements for
cokemaking,” International Journal of Coal Geology, vol. 50, no. 1-4, pp.
389-412, 2002. https://doi.org/10.1016/S0166-5162(02)00123-4

J. W. Patrick, M. J. Reynolds, and F. H. Shaw, “Development of optical
anisotropy in vitrains during carbonization,” Fuel, vol. 52, no. 3, pp.
198-204, 1973. https://doi.org/10.1016 /0016-2361(73)90079-3

A. Moreland, J. W. Patrick, and A. Walker, “Optical anisotropy in
cokes from high-rank coals,” Fuel, vol. 67, no. 5, pp. 730-732, 1988.
https://doi.org/10.1016,/0016-2361(88)90307-9

A. Varma, “Influence of petrographical composition on coking behavior of
inertinite-rich coals,” International journal of coal geology, vol. 30, no. 4, pp.
337-347, 1996. https: //doi.org/10.1016/0166-5162(95)00053-4

S. Pusz, B. Kwieciriska, A. Koszorek, M. Krzesiniska, and B. Pilawa,
“Relationships between the optical reflectance of coal blends and the
microscopic characteristics of their cokes,” International Journal of Coal
Geology, vol. 77, no. 3-4, pp. 356-362, 2009. https://doi.org/10.1016/j.coal.
2008.06.003/ I1T1

K. Hiraki, H. Hayashizaki, Y. Yamazaki, T. Kanai, X. Zhang,
M. Shoji, H. Aoki, T. Miura, and K. Fukuda, “The effect of
changes in microscopic structures on coke strength in carbonization
process,” ISIJ international, vol. 51, no. 4, pp. 538543, 2011.
https://doi.org/10.2355 /isijinternational.51.538

Ingenieria y Ciencia


http://www.jstor.org/stable/24102031
http://www.jstor.org/stable/24102031
https://doi.org/10.1016/B978-0-08-045051-3.00002-6
https://doi.org/10.1016/B978-0-08-045051-3.00002-6
https://doi.org/10.3103/S1068364X12100043
https://doi.org/10.1016/S0166-5162(02)00123-4
https://doi.org/10.1016/0016-2361(73)90079-3
https://doi.org/10.1016/0016-2361(88)90307-9
https://doi.org/10.1016/0166-5162(95)00053-4
https://doi.org/10.1016/j.coal.2008.06.003
https://doi.org/10.1016/j.coal.2008.06.003
https://doi.org/10.2355/isijinternational.51.538

E. Romero-Salcedo, S. Manosalva-Sanchez, W. Naranjo-Merchan, O. Garcia-Cabrejo, M.

Bermudez, J. Gomez-Neita

[13] M. Piechaczek, A. Mianowski, and A. Sobolewski, “The original concept of
description of the coke optical texture,” International journal of coal geology,
vol. 139, pp. 184-190, 2015. https://doi.org/10.1016/j.coal.2014.07.002

[14] L. North, K. Blackmore, K. Nesbitt, and M. R. Mahoney, “Models of coke
quality prediction and the relationships to input variables: a review,” Fuel,
vol. 219, pp. 446-466, 2018. |https://doi.org/10.1016 /j.fuel.2018.01.062

[15] C. F. Diessel and E. Wolff-Fischer, “Coal and coke petrographic
investigations into the fusibility of carboniferous and permian coking coals,”
International journal of coal geology, vol. 9, no. 1, pp. 87-108, 1987.

https://doi.org/10.1016 /0166-5162(87)90066-8 [112]

[16] R. Sharma, P. Dash, P. Banerjee, and D. Kumar, “Effect of
coke micro-textural and coal petrographic properties on coke strength
characteristics,” ISIJ international, vol. 45, no. 12, pp. 1820-1827, 2005.

https://doi.org/10.2355 /isijinternational.45.1820

[17] J. C. Hower and W. G. Lloyd, “Petrographic observations of gieseler
semi-cokes from high volatile bituminous coals,” Fuel, vol. 78, no. 4, pp.
445-451, 1999. https: //doi.org/10.1016/S0016-2361(98)00170-7

[18] A. Guerrero, M. A. Diez, and A. G. Borrego, “Influence of charcoal fines on
the thermoplastic properties of coking coals and the optical properties of
the semicoke,” International Journal of Coal Geology, vol. 147, pp. 105-114,

2015. https://doi.org/10.1016/j.coal.2015.06.013

[19] A. G. Borrego and M. A. Diez, Petrografia del Coque metalirgico. Incar,
Ed. Oviedo, 2014. [126]

[20] V. J. B. Bitencourt and S. R. Dillenburg, “Application of multivariate
statistical techniques in alongshore differentiation of coastal barriers,”
Marine Geology, vol. 419, p. 106077, 2020. https://doi.org/10.1016/j.
margeo.2019.106077| [I16]

[21] J. Davis, Statistics and Data Analysis in Geology, John Wiley and Sons, New
York, 656, 2002.

[22] R Core Team, R: A Language and FEnvironment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria, 2017.

https://www.R-project.org/

[23] S. Padoan, A. Zappi, T. Adam, D. Melucci, A. Gambaro, G. Formenton,
O. Popovicheva, D.-L. Nguyen, J. Schnelle-Kreis, and R. Zimmermann,
“Organic molecular markers and source contributions in a polluted

ing.cienc., vol. 16, no. 32, pp. [109, , julio-diciembre. 2020. 131|


https://doi.org/10.1016/j.coal.2014.07.002
https://doi.org/10.1016/j.fuel.2018.01.062
https://doi.org/10.1016/0166-5162(87)90066-8
https://doi.org/10.2355/isijinternational.45.1820
https://doi.org/10.1016/S0016-2361(98)00170-7
https://doi.org/10.1016/j.coal.2015.06.013
https://doi.org/10.1016/j.margeo.2019.106077
https://doi.org/10.1016/j.margeo.2019.106077
https://www.R-project.org/

A Predictive Model for the Anisotropy Index of Semi-Coke Derived from the Properties of

Colombia's Eastern Cordillera Coals

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

132

municipality of north-east italy: Extended pca-pmf statistical approach,”
Environmental Research, p. 109587, 2020. https://doi.org/10.1016 /j.envres.
2020.109587

M. Mroéwcezyniska, J. Sztubecki, and A. Greinert, “Compression of
results of geodetic displacement measurements using the pca method
and neural networks,” Measurement, vol. 158, pp. 1-12, 2020. https:
//doi.org/10.1016 /j.measurement.2020.107693

S. Makvandi, G. Beaudoin, M. Beth McClenaghan, D. Quirt, and
P. Ledru, “Pca of fe-oxides mla data as an advanced tool in provenance
discrimination and indicator mineral exploration: Case study from
bedrock and till from the kiggavik u deposits area (nunavut, canada),”
Journal of Geochemical FExploration, vol. 197, pp. 199 — 211, 2019.
https://doi.org/10.1016/j.gexplo.2018.11.013

M. Kutner, J. Neter, C. Nachtsheim, and W. Wasserman, Applied Linear
Statistical Model Richard D, 2004.

C. L. Guatame and G. Sarmiento, “Interpretacion del ambiente sedimentario
de los carbones de la formaciéon guaduas en el sinclinal checua-lenguazaque
a partir del analisis petrogréfico,” Geologia Colombiana, vol. 29, pp. 41-57,

2004. [IX

L. J. M. Umana, C. E. C. Gémez, and J. F. G. Casallas, “Analisis de
microlitotipos en los carbones de la formacién guaduas en el sinclinal de
sueva, cundinamarca,” Geologia Colombiana, vol. 31, pp. 11-26, 2006.

J. S. Goémez-Neita, M. D. Loépez-Carrasquilla, S. R. Manosalva-Sanchez,
and W. E. Naranjo-Merchan, “Aportes a la determinacion de
paleoambientes, carbones del sinclinal checua-lenguazaque. colombia,”
Ingenieria Investigacion y Desarrollo, vol. 16, no. 2, pp. 32-42, 2016.
https://doi.org/10.19053/1900771X.v16.n2.2016.5444

J. S. Gomez-Neita, M. Costa-Pompeu, S. R. Manosalva-Sanchez, A. A.
Evangelista-Nogueira, W. E. Naranjo-Merchan, and A. Matos de Lima,
“Organic petrography of cretaceous coals in Colombia, Sutatausa-cucunuba
region,” Bomgeam, vol. 3, 2019. http://doi.org/10.31419/ISSN.2594-942X.
v62019i3a2JSGN

O. P. Gomez Rojas, A. Blandon, C. Perea, and M. Mastalerz, “Petrographic
characterization, variations in chemistry, and paleoenvironmental
interpretation of colombian coals,” International Journal of Coal Geology, p.
103516, 2020. https://doi.org/10.1016/j.coal.2020.103516

Ingenieria y Ciencia


https://doi.org/10.1016/j.envres.2020.109587
https://doi.org/10.1016/j.envres.2020.109587
https://doi.org/10.1016/j.measurement.2020.107693
https://doi.org/10.1016/j.measurement.2020.107693
https://doi.org/10.1016/j.gexplo.2018.11.013
https://doi.org/10.19053/1900771X.v16.n2.2016.5444
http://doi.org/10.31419/ISSN.2594-942X.v62019i3a2JSGN
http://doi.org/10.31419/ISSN.2594-942X.v62019i3a2JSGN
https://doi.org/10.1016/j.coal.2020.103516

E. Romero-Salcedo, S. Manosalva-Sanchez, W. Naranjo-Merchan, O. Garcia-Cabrejo, M.

Bermudez, J. Gomez-Neita

[32] E. Diaz-Faes, C. Barriocanal, M. Diez, and R. Alvarez, “Applying tga
parameters in coke quality prediction models,” Journal of analytical
and applied pyrolysis, vol. 79, no. 1-2, pp. 154-160, 2007. https:
//doi.org/10.1016/j.jaap.2006.11.001

[33] L. Smedowski and M. Piechaczek, “Impact of weathering on coal properties
and evolution of coke quality described by optical and mechanical
parameters,” International Journal of Coal Geology, vol. 168, pp. 119-130,

2016. [https://doi.org/10.1016/j.coal.2016.08.005

[34] X. Guo, Y. Tang, C. F. Eble, Y. Wang, and P. Li, “Study on petrographic
characteristics of devolatilization char/coke related to coal rank and
coal maceral,” International Journal of Coal Geology, p. 103504, 2020.

https://doi.org/10.1016/j.coal.2020.103504

[35] Y. Yuan, Q. Qu, L. Chen, and M. Wu, “Modeling and optimization of coal
blending and coking costs using coal petrography,” Information Sciences,
vol. 522, pp. 49 — 68, 2020. https://doi.org/10.1016/j.ins.2020.02.072
120

[36] B. D. Flores, A. G. Borrego, M. A. Diez, G. L. da Silva, V. Zymla, A. C.
Vilela, and E. Osorio, “How coke optical texture became a relevant tool for
understanding coal blending and coke quality,” Fuel Processing Technology,
vol. 164, pp. 13-23, 2017. https://doi.org/10.1016/j.fuproc.2017.04.015

[37] S. Chehreh Chelgani, S. Matin, and J. C. Hower, “Explaining relationships
between coke quality index and coal properties by random forest method,”
Fuel, vol. 182, pp. 754 — 760, 2016. https://doi.org/10.1016/j.fuel.2016.06.034
1124]

[38] R. Morga, I. Jelonek, K. Kruszewska, and W. Szulik, “Relationships between
quality of coals, resulting cokes, and micro-raman spectral characteristics of
these cokes,” International Journal of Coal Geology, vol. 144-145, pp. 130 —
137, 2015. https://doi.org/10.1016/j.coal.2015.04.006

[39] R. J. Gray, “Some petrographic applications to coal, coke and
carbons,” Organic Geochemistry, vol. 17, no. 4, pp. 535 — 555, 1991.
https://doi.org/10.1016,/0146-6380(91)90117-3

[40] T. Gentzis and P. Rahimi, “A microscopic approach to determine the origin
and mechanism of coke formation in fractionation towersa™t,” Fuel, vol. 82,
no. 12, pp. 1531 — 1540, 2003. https://doi.org/10.1016/S0016-2361(03)
00032-2|[125]

[41] C. Barriocanal, S. Hanson, J. W. Patrick, and A. Walker, “The
characterization of interfaces between textural components in metallurgical

ing.cienc., vol. 16, no. 32, pp. [109 , julio-diciembre. 2020. 133|


https://doi.org/10.1016/j.jaap.2006.11.001
https://doi.org/10.1016/j.jaap.2006.11.001
https://doi.org/10.1016/j.coal.2016.08.005
https://doi.org/10.1016/j.coal.2020.103504
https://doi.org/10.1016/j.ins.2020.02.072
https://doi.org/10.1016/j.fuproc.2017.04.015
https://doi.org/10.1016/j.fuel.2016.06.034
https://doi.org/10.1016/j.coal.2015.04.006
https://doi.org/10.1016/0146-6380(91)90117-3
https://doi.org/10.1016/S0016-2361(03)00032-2
https://doi.org/10.1016/S0016-2361(03)00032-2

A Predictive Model for the Anisotropy Index of Semi-Coke Derived from the Properties of

Colombia's Eastern Cordillera Coals

[42]

[43]

134

cokes,” Fuel, wvol. 73, mno. 12, pp. 1842 - 1847, 1994. https:
//doi.org/10.1016,/0016-2361(94)90209-7

M. Lundgren, L. Sundqvist Okvist, and B. Bjoérkman, “Coke reactivity
under blast furnace conditions and in the csr/cri test,” steel research
international, vol. 80, no. 6, pp. 396-401, 2009. https://onlinelibrary.wiley.
com/doi/abs/10.1002 /srin.201090020

D. Vogt and M. Depoux, “Coke reactivity prediction by texture analysis,”
Fuel Processing Technology, vol. 24, pp. 99 — 105, 1990, coal Characterisation
for Conversion Processes II. https://doi.org/10.1016,/0378-3820(90)90046- U
1126

Ingenieria y Ciencia


https://doi.org/10.1016/0016-2361(94)90209-7
https://doi.org/10.1016/0016-2361(94)90209-7
https://onlinelibrary.wiley.com/doi/abs/10.1002/srin.201090020
https://onlinelibrary.wiley.com/doi/abs/10.1002/srin.201090020
https://doi.org/10.1016/0378-3820(90)90046-U

	Introduction
	Materials and methods
	Results
	Coal characterization
	Semi-coke textures
	Statistical model
	Mathematical model

	Discussion
	Conclusions

