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Abstract
All generators of the optimal algebra associated with a generalization
of the Endem-Fowler equation are showed; some of them allow to
give invariant solutions. Variational symmetries and the respective
conservation laws are also showed. Finally, a representation of Lie
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Lie Algebra Representation, Conservation Laws and Some Invariant Solutions for a
Generalized Emden-Fowler Equation

Representación del álgebra de Lie, leyes de
conservación y algunas soluciones invariantes para
una ecuación de Emden-Fowler generalizada

Resumen
Se muestran todos los generadores del álgebra óptima asociados con
una generalización de la ecuación de Endem-Fowler; algunos de ellos
permiten dar soluciones invariantes. También se muestran las simetrías
variacionales y las respectivas leyes de conservación. Finalmente, se
muestra una representación del álgebra de simetría de Lie mediante
grupos de matrices.

Palabras clave: Soluciones invariantes; grupo de simetrías de Lie;
sistema óptimo; clasificación de álgebras de Lie; simetrías variacionales;
Leyes de conservación.

1 Introduction

It is known that the class of Emden-Fowler equations yxx = Axnym, such
that A,m, n are real constants, have applications in physics, astronomy and
chemistry [1],[2],[3],[4]. In [5] Polyanin and Zaitsev present a generalized
Emden-Fowler equation yxx = Axnym(yx)l with A,m, n, l real constants.
They proposed for this equation a big amount of solutions for multiple
combinations of the parameters A,n,m, l. In the particular case in which
A = −2, n = 1,m = −2 and l = 3, that is,

yxx = −2xy3
xy
−2, (1)

in [5], it is proposed an implicit parameterized solution for τ, as follows:

x = τ
(
c1τ

ν + c2τ
−ν) , with y = τ2, ν = 3, (2)

where c1, c2 are arbitrary constants. The Lie symmetry group associated
to this equation is presented by Arrigo in [6], however, the computations
used to obtain this result are not given in detail (such Lie symmetry group
is an 8-dimensional Lie group). In [6] also it was reduce (1) by means of the
canonical variable transformation method with three of these symmetries,
which are specifically:

−Π2 = −x
2

y2

∂

∂x
+
x

y

∂

∂y
, Π5 = x

∂

∂x
+ 2y

∂

∂y
, Π9 = y

∂

∂y
.
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These symmetries allow us to obtain the corresponding transformations
of (1):

1. rs′′(r) + 2s′(r) = 0 with x = ( r2

3s(r))1/3 and y = (3rs(r))
1
3 ,

2. r2s′′(r) + r2(s′(r))2 − 2 = 0 with x = es and y = r,

3. s′′(r) + 2r(s′(r))3 + (s′(r))2 = 0 with x = r and y = es.

Since the symmetry group of (1) is an 8-dimensional group and following
the ideas of citas [7],[8],[9], we search for its algebraic characteristics and
some invariant solutions of (1). In fact, the goal of this work is: i) to
calculate the 8-dimensional Lie symmetry group in all detail, ii) to present
the optimal algebra (optimal system) for (1), iii) to use some elements of
the optimal algebra to propose invariant solutions for (1), iv) to construct
the Lagrangian with which we could determine the variational symmetries
and thus to present conservation laws associated, and finally iv) to classify
the Lie algebra associated to (1) by groups of matrices.

2 Continuous group of Lie symmetries

The Lie symmetry group associated to (1) is an 8-dimensional Lie group
presented by Arrigo in [6], however, the computations used to obtain this
result are not given in detail. In this section we present the computational
details of that result.

Proposition 2.1. The Lie symmetry group for the equation (1) is
generated by the following vector fields:

Π1 = 2yx2 ∂

∂x
+ xy2 ∂

∂y
, Π2 =

x2

y2

∂

∂x
− x

y

∂

∂y
, Π3 = 2xy3 ∂

∂x
+ y4 ∂

∂y
,

Π4 =
x

y3

∂

∂x
− 1

y2

∂

∂y
, Π5 = x

∂

∂x
+ 2y

∂

∂y
, Π6 = y2 ∂

∂x
,

Π7 =
1

y

∂

∂x
, and Π9 = y

∂

∂y
. (3)
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Proof. The general form of a one-parameter Lie group which can be defined
for (1), is given by x → x + εX(x, y) + ... and y → y + εY (x, y) + ...,
where ε is the parameter of the group. The vector field associated to such
group of transformations can be written as Γ = X(x, y) ∂

∂x + Y (x, y) ∂∂y .

Applying the second prolongation Γ(2) = Γ + Y[x]
∂
∂yx

+ Y[xx]
∂

∂yxx
to (1),

we can find the infinitesimal generators X(x, y), Y (x, y) that satisfy the
symmetry condition

y2Y[xx] + 2yyxxY + 2y3
xX + 6xy2

xY[x] = 0, (4)

where Y[x], Y[xx] are the coefficients in Γ(2) given by:

Y[x] = Dx[Y ]− (Dx[X])yx = Yx + (Yy −Xx)yx −Xyy
2
x,

Y[xx] = Dx[Y[x]]− (Dx[X])yxx (5)

= Yxx + (2Yxy −Xxx)yx + (Yyy − 2Xxy)y
2
x −Xyyy

3
x

+ (Yy − 2Xx)yxx − 3Xyyxyxx,

being Dx the total derivative operator: Dx = ∂x + yx∂y + yxx∂yx + · · · .
After substituting (5) into (4) we get:

y2[Yxx + (2Yxy −Xxx)yx + (Yyy − 2Xxy)y
2
x −Xyyy

3
x]

+ y2[(Yy − 2Xx)yxx − 3Xyyxyxx] + 2yyxxY + 2y3
xX

+ 6xy2
x[Yx + (Yy −Xx)yx −Xyy

2
x] = 0.

After substituting yxx = −2xy3
xy
−2 into the preceding expression and

analysing the coefficients associated to yx, we get the following determinant
equations:

y2Yxx =0, (6a)

2y2Yxy − y2Xxx =0, (6b)

y2Yyy − 2y2Xxy + 6xYx =0, (6c)

2yX − y3Xyy − 2xyXx + 4xyYy − 4xY =0. (6d)

Solving (6a) we have:

Y = c1(y)x+ c2(y), (7)
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where c1(y), c2(y) are arbitrary functions. From (7), we get Yxy =
c′1(y), then writing this expression on (6b) we obtain that Xxx = 2c′1(y),
therefore, integrating we have Xx = 2c′1(y)x + c3(y), which implies X =
c′1(y)x2 +c3(y)x+c4(y), with c3(y), c4(y) arbitrary functions. Substituting
the previous expression and (7) into (6c), we obtain that x(−3y2c′′1(y) +
6c1(y))+y2[c′′2(y)]−2y2[c′3(y)] = 0, then, taking the derivative with respect
to x, we have −3y2c′′1(y) + 6c1(y) = 0, and solving this ODE for c1(y) we
get c1(y) = k1y

2 + k2
y , with k1, k2 arbitrary constants. Therefore,

Y =

[
k1y

2 +
k2

y

]
x+ c2(y) and X =

[
2k1y −

k2

y2

]
x2 + c3(y)x+ c4(y).

Substituting the previous equation into (6d) we get 2yc4(y) − y3c′′4(y) +
x
(
−y3c′′3(y) + 4yc′2(y)− 4c2(y)

)
= 0. Analyzing the coefficients with

respect to x we have that −y3c′′3(y) + 4yc′2(y)− 4c2(y) = 0, which in turn
implies

c′′3(y) =
4c′2(y)

y2
− 4c2(y)

y3
, (8)

and, consequently, 2yc4(y) − y3c′′4(y) = 0. Thus, c4(y) = k6y
2 + k7

y , with
k6, k7 arbitrary constants. This allow us to conclude that X and Y are
given by

Y =

[
k1y

2 +
k2

y

]
x+ c2(y), X =

[
2k1y −

k2

y2

]
x2 + c3(y)x+ k6y

2 +
k7

y
.

(9)
When we substitute the previous equations into (6c) we get:

2xk1y
2− 8y2xk1 + 6xk1y

2 +
2xk2

y
− 8xk2

y
+

6xk2

y
+ c′′2(y)y2− 2y2c′3(y) = 0,

which is equivalent to c′′2(y) − 2c′3(y) = 0. Then, integrating with respect
to y we obtain

c′2(y)− 2c3(y) = k9 ⇒ c3(y) =
c′2(y)− k9

2
⇒ c′′′2 (y)

2
= c′′3(y).

When substituting the last equation into (8), we get−y3
(
c′′′2 (y)

2

)
+4yc′2(y)−

4c2(y) = 0 and solving for c2(y), it is obtained c2(y) = k3y
4 + k4

y2 + k8y,
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with k3, k4, k8 arbitrary constants. Now, we know that c3(y) =
c′2(y)−k9

2 ,
then c3(y) = 2k3y

3 − k4
y3 + k8

2 −
k9
2 and, thus, X and Y from (9), have the

following form:

X =

(
2k1y +

k2

y2

)
x2 +

(
2k3y

3 − k4

y3
+
k8

2
− k9

2

)
x+ k6y

2 +
k7

y
,

Y =

(
k1y

2 − k2

y

)
x+ k3y

4 + k8y +
k4

y2
.

Now, taking k5 = k8
2 −

k9
2 and K4 = −k4 we get that the infinitesimal

generators are:

X =

(
2k1y +

k2

y2

)
x2 +

(
2k3y

3 +
K4

y3
+ k5

)
x+ k6y

2 +
k7

y
,

Y =

(
k1y

2 − k2

y

)
x+ k3y

4 + (2k5 + k9)y − K4

y2
, (10)

with k1, · · ·K4, ·, k8 arbitrary constants; this implies that the symmetry
group is generated by the operators described in the statement of the
proposition.

3 Optimal algebra

Taking into account [10, 11, 12, 13], we present in this section the optimal
algebra associated to the symmetry group of (1), that shows a systematic
way to classify the invariant solutions.

To obtain the optimal algebra, we should first calculate the
corresponding commutator table, which can be obtained from the operator

[Πα,Πβ] = ΠαΠβ −ΠβΠα =

n∑
i=1

(
Πα(ξiβ)−Πβ(ξiα)

) ∂

∂xi
, (11)

where i = 1, 2, with α, β = 1, 2, 3, ..., 7, 9 and ξiα, ξiβ are the corresponding
coefficients of the infinitesimal operators Πα,Πβ. After applying the
operator (11) to the symmetry group of (1), we obtain the operators that
are shown in the following table
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Table 1: Commutators table associated to the symmetry group of (1).

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π9

Π1 0 0 0 −3Π2 −3Π1 −Π3 9Π9 − 5Π5 −Π1
Π2 0 0 −3Π1 0 3Π2 9Π9 − 4Π5 −Π4 2Π2
Π3 0 3Π1 0 3Π5 −6Π3 0 −3Π6 −3Π3
Π4 3Π2 0 −3Π5 0 6Π4 −3Π7 0 3Π4
Π5 3Π1 −3Π2 6Π3 −6Π4 0 3Π6 −3Π7 0
Π6 Π3 −(9Π9 − 4Π5) 0 3Π7 −3Π6 0 0 −2Π6
Π7 −(9Π9 − 5Π5) Π4 3Π6 0 3Π7 0 0 Π7
Π9 Π1 −2Π2 3Π3 −3Π4 0 2Π6 −Π7 0

Now, the next thing is to calculate the adjoint action representation of
the symmetries of (1) and to do that, we use Table 1 and the operator

Ad(exp(λΠ))H =
∞∑
n=0

λn

n!
(ad(Π))nG for the symmetries Π and G.

Making use of this operator, we can construct the Table 2, which shows
the adjoint representation for each Πi.

The following result shows what is the optimal algebra associated to the
equation (1). The whole procedure will not be presented in this document
due to its length.

Proposition 3.1. The optimal algebra associated to the equation (1) is
given by the vector fields shown in the Table 3.

Table 2: Adjoint representation of the symmetry group of (1).

adj[] Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π9

Π1 Π1 Π2 Π3 Π4 + 3λΠ2 Π5 + 3λΠ1 Π6 + λΠ3 Π7 − 9λΠ9 + 5λΠ5 + 3λ2Π1 Π9 + λΠ1

Π2 Π1 Π2 Π3 + 3λΠ1 Π4 Π5 − 3λΠ2 Π6 − 9λΠ9 + 4λΠ5 + 3λ2Π2 Π7 + λΠ4 Π9 − 2λΠ2

Π3 Π1 Π2 − 3λΠ1 Π3 Π4 − 3λΠ5 − 9λ2Π3 Π5 + 6λΠ3 Π6 Π7 + 3λΠ6 Π9 + 3λΠ3

Π4 Π1 − 3λΠ2 Π2 Π3 + 3λΠ5 − 9λ2Π4 Π4 Π5 − 6λΠ4 Π6 + 3λΠ7 Π7 Π9 − 3λΠ4

Π5 e−3λΠ1 e3λΠ2 e−6λΠ3 e6λΠ4 Π5 e−3λΠ6 e3λΠ7 Π9

Π6 Π1 − λΠ3 Π2 + 9λΠ9 − 4λΠ5 + 3λ2Π6 Π3 Π4 − 3λΠ7 Π5 + 3λΠ6 Π6 Π7 Π9 + 2λΠ6

Π7 Π1 + 9λΠ9 − 5λΠ5 + 3λ2Π7 Π2 − λΠ4 Π3 − 3λΠ6 Π4 Π5 − 3λΠ7 Π6 Π7 Π9 − λΠ7

Π9 e−λΠ1 e2λΠ2 e−3λΠ3 e3λΠ4 Π5 e−2λΠ6 eλΠ7 Π9
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Table 3: Optimal algebra generators for (1).

Number of
elements Vector Fields Number of

elements Vector Fields

1 Π1

5

Π1 + Π2 + Π5 + Π7 + Π9
Π2 − 2Π4 + Π5 + Π6 + Π7
Π1 + Π3 + Π4 + Π5 + Π9
Π1 + Π2 + Π5 + Π6 + Π7
Π1 + Π2 + Π3 − Π5 + Π9
Π1 + Π2 + Π4 + Π5 + Π6
Π2 + Π4 − Π6 + Π7 + Π9

Π2 + Π4 + Π5 + Π6 − 1
2

Π7

Π1 + Π2 + Π3 + Π5 − 1
3

Π9

Π1 + Π4 + Π6 + Π7 + Π9
Π2 − 3Π4 + Π6 + 3Π7 + Π9

Π3 − 1
3

Π5 + Π6 + Π7 + Π9

Π1 − 5
3

Π2 + Π3 + Π5 + Π9

Π1 + Π3 + Π5 + Π6 − 3
2

Π9

Π1 + Π3 − 1
2

Π5 + Π6 + Π9

Π1 + Π4 + Π5 + Π6 + Π7
Π2 + 2Π4 + Π5 + Π6 + Π7
Π1 + Π2 + Π6 + Π7 + Π9
Π1 + Π2 + Π3 + Π4 + Π9
Π1 + Π2 + Π4 + Π5 − 2Π9

Π1 − 5
9

Π2 + Π3 + Π4 + 5
9

Π5

Π2 + Π3 + Π4 + Π7 + Π9
Π1 − 2Π2 + Π4 + Π7 + Π9

2

Π1 + Π5
-Π1 + Π3
Π5 + Π7
Π1 + Π3
Π2 + Π4

3

Π1 + Π2 + 5
9

Π5

Π4 + Π6 + Π9
Π1 + Π3 + Π6
Π4 + Π6 + Π7
Π1 + Π4 + Π7
Π2 + Π4 + Π7
Π3 + Π6 + Π7
Π5 + Π6 + Π7
Π1 + Π2 + Π3
Π4 + Π5 + Π7

4

Π1 + Π4 + Π7 + Π9
Π2 + Π4 + Π7 + Π9
Π1 + Π2 + Π4 + Π9
Π1 + Π2 + Π3 − Π5

Π1 + Π2 + Π3 − 3
2

Π9

Π1 + Π2 + Π3 + Π6

Π3 + Π6 + 2
15

Π7 + 9
5

Π9

Π2 + Π3 + Π4 + 3Π6
Π1 + Π2 + Π5 + Π9
Π1 + Π2 + Π3 + Π4

3Π1 − 3Π2 + Π3 + Π5
Π1 + Π3 + Π5 + Π9

Π3 − 2
3

Π5 + Π6 + Π9

Π1 + Π3 + Π5 − 3Π9
Π5 + Π6 + Π7 + Π9
Π2 + Π3 + Π4 + Π7
Π1 + Π2 + Π5 + Π7
Π1 + Π2 + Π4 + Π7
Π1 + Π2 + Π3 + Π9
Π1 + Π4 + Π6 + Π7
Π2 + Π4 + Π6 + Π7

6

Π1 + Π2 + Π3 + Π4 + Π5 − 3
2

Π9

Π1 + Π2 + Π3 + Π4 + Π5 − 3Π9

Π1 + Π2 + 50
81

Π5 + Π6 + Π7 − 5
2

Π9

Π1 + Π2 + Π3 + Π4 + Π7 + Π9
Π1 + Π2 + Π4 + Π5 + Π7 − 2Π9

Π1 − 5
3

Π2 + Π3 + Π4 + Π5 + Π9

Π1 + Π2 + Π3 + Π4 + Π6 + Π7
Π1 + Π2 + Π3 − Π5 + Π7 + Π9
Π2 + Π3 − Π5 + Π6 + Π7 + Π9
Π1 + Π2 + Π3 + Π4 + Π5 + Π9

Π1 + Π4 + Π5 + Π6 − 3
5

Π7 − 9
5

Π9

Π2 + Π3 + Π4 + Π5 + 3Π6 + 3Π7

7

Π1 + Π2 + Π3 + Π4 + Π5 + Π6 + Π9
Π1 + Π2 + Π3 + Π5 + Π6 + Π7 + Π9

Π1 + Π2 + Π3 + 1
3

Π4 + Π5 + Π7 − 3
2

Π9

Π1 − Π3 + Π4 + Π5 + Π6 + 3Π7 − 3
2

Π9

Π1 + Π2 + Π4 + 8Π5 − Π6 + Π7 − 15Π9
Π1 + Π2 + Π4 − 5Π5 − 1Π6 + Π7 − 9Π9

Π1 + Π3 + Π4 + Π5 + 3
5

Π6 + 3
25

Π7 − 3Π9

Π1 + Π2 + Π3 + Π4 + Π5 + 3Π7 − 3
2

Π9
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4 Invariant solutions by some generators of the optimal
algebra

In this section, we obtain invariant solutions taking into account some
operators that generate the optimal algebra presented in Proposition 3.1.
For this purpose, we use the method of invariant curve condition [11]
(presented in section 4.3), which is given by the following equation

Q(x, y, yx) = Y − yxX = 0. (12)

Using the element Π1 from Proposition 3.1, under the condition (12), we
obtain that Q = Y1− yxX1 = 0, which implies (xy2)− yx(2yx2) = 0. After
isolating yx we get yx = y

2x , then solving this ODE we have |y(x)| = c
√
|x|,

where c is an arbitrary constant, which is an invariant solution for (1),
using an analogous procedure with some of the elements of the optimal
algebra (Table 3), we obtain both implicit and explicit invariant solutions
that are shown in the Table 4, with c being an arbitrary constant.

Remark 4.1. The invariant solution of the numeral 4 from Table 4 is the
same solution as the one presented by Arrigo in [6] (using the symmetry
−Π2,) if we use the method of invariant curve given in this document,
nevertheless, the invariant solutions of numeral 1 and 2 shown in Table
4, are a new invariant solutions. The implicit solutions of the numerals
5, 6, 7, 8, 9 and 10 from Table 4, are implicit solutions which are different
from the implicit solutions (2) presented in [5].
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5 Variational symmetries and conserved quantities

In this section, we present the variational symmetries of (1) and we are
going to use them to define conservation laws via Noether’s theorem [14].
First of all, we are going to determine the Lagrangian using the Jacobi Last
Multiplier method, presented by Nucci in [15], and for this reason, we are
urged to calculate the inverse of the determinant ∆,

∆ =

∣∣∣∣∣∣∣
x yx yxx

Π5,x Π5,y Π
(1)
5

Π9,x Π9,y Π
(1)
9

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
x yx yxx
x 2y yx
0 y yx

∣∣∣∣∣∣ ,
where Π5,x,Π5,y,Π9,x, and Π9,y are the components of the symmetries
Π6,Π9 shown in the Proposition 3 and Π

(1)
5 ,Π

(1)
9 as its first prolongations.

Then we get ∆ = 2xy3
x

y which implies that M = 1
∆ = y

2xy3
x
. Now, from

[15], we know that M can also be written as M = Lyxyx which means
that Lyxyx = y

2xy3
x
, then integrating twice with respect to yx we obtain the

Lagrangian
L(x, y, yx) =

y

4xyx
+ f1(x, y)yx + f2(x, y), (13)

where f1, f2 are arbitrary functions. From the preceding expression we can
consider f1 = f2 = 0. It is possible to find more Lagrangians for (1) by
considering other vector fields given in the Proposition 3. We then calculate

X(x, y)Lx +Xx(x, y)L+ Y (x, y)Ly + Y[x](x, y)Lyx = Dx[f(x, y)],

using (13) and (5). Thus we get

X

(
− y

4x2yx

)
+Xx

(
y

4xyx

)
+ Y

(
1

4xyx

)
+
(
Yx + (Yy −Xx)yx −Xyy

2
x

)
(
− y

4xy2
x

)
− fx − yxfy = 0.

From the preceding expression, rearranging and associating terms with
respect to 1, yx, y

2
x and y3

x, we obtain the following determinant equations

Yx = fy =0, (14a)
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yXy − 4xfx =0, (14b)
−yX + 2xyXx + xY − xyYy =0. (14c)

Solving the preceding system for X,Y and f we obtain the infinitesimal
generators of Noether’s symmetries

Y = a1y, X = 4a3 ln(y) + a2x
1
2 , and f(x) = a3 ln(x) + a4. (15)

with a1, a2, a3 and a4 arbitrary constants. Then, the Noether symmetry
group or variational symmetries are

V1 = y
∂

∂y
, V2 = x

1
2
∂

∂x
and V3 = ln(y)

∂

∂x
. (16)

According to [16], in order to obtain the conserved quantities or
conservation laws, we should solve

I = (Xyx − Y )Lyx −XL+ f,

using (13), (15) and (16). Therefore, the conserved quantities are given by

I1 =
y2

4xy2
x

+ a3 ln(x) + a4, I2 =
−y

2x
1
2 yx

+ a3 ln(x) + a4, (17)

I3 =
−y ln(y)

2xyx
+ a3 ln(x) + a4.

6 Classification of Lie algebra

The generating operators of the Lie symmetry group of (1) are presented in
(3). The above indicates that the vector space generated by the operators
described forms a 8-dimensional Lie algebra. In the next proposition we
assume some particular criterion of semisimplicity given by Cartan, and its
proof can be found in [17]

Proposition 6.1. (Cartan’s theorem) A Lie algebra is semisimple if and
only if its Killing form is nondegenerate.

|108 Ingeniería y Ciencia



Gabriel Loaiza, Yeisson Acevedo, Oscar Londoño and Danilo A. García

Cartan’s theorem is useful to classify the Lie algebras obtained in the
symmetry analysis of differential equations, more specifically, for deciding
whether these algebras are semisimple or not.

Proposition 6.2. The Lie algebra associated to (1) is a semisimple Lie
algebra.

Proof. Let g be the Lie algebra associated to (1). We use the Cartan
criterion of semisimple Lie algebra. First we calculate the matrix
corresponding to the Cartan-Killing form. The matrix of the Cartan-Killing
form is given by

M =



0 0 0 0 0 0 −18 0
0 0 0 0 0 −18 0 0
0 0 0 54 0 0 0 0
0 0 54 0 0 0 0 0
0 0 0 0 108 0 0 54
0 −18 0 0 0 0 0 0
−18 0 0 0 0 0 0 0

0 0 0 0 54 0 0 28


.

A straightforward computation shows that det (M) 6= 0 so, by the Cartan
criterion, g is a semisimple Lie algebra, where g is the Lie algebra generated
by the vector field of the symmetry group that is obtained from (1). After
this we compute the signature and we get that it is given by (5, 3).

One way to completely determine a Lie algebra is given by by its
roots system, since it is known that a semisimple Lie algebra is uniquely
determined by such system. In the next proposition we find a Lie
subalgebra isomorphic to sl(2,R).

Definition 6.1. Let g be a finite-dimensional Lie algebra over an arbitrary
field k. Choose a basis ej , 1 ≤ i ≤ n, in g where n = dim g and set
[ei, ej ] = Ckijek. Then the coefficients Ckij are called structure constants.

They form a structure tensor, which is an element of the space g∗⊗g∗⊗g.

Proposition 6.3. Let g1 and g2 be two Lie algebras of dimension n.
Suppose each has a basis with respect to which the structure constant
are the same. Then g1 and g2 are isomorphic.
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Proposition 6.4. Let g3 be the Lie subalgebra that has a basis given by
the vector field Π3,Π4,Π5. Then g3 is isomorphic to sl(2,R).

Proof. Let’s define H,X, Y by H =
1

3
Π5, X =

1

3
Π3, Y =

1

3
Π4, then

[H,X] = 2X, [H,Y ] = −2Y , [X,Y ] = H. Considering a change of basis
suggested by the preceding expressions, we obtain constant structure that
coincide with those of sl(2,R) and consequently, by Proposition 6.3, the
statement is proved.

Theorem 6.1. Let g be a semisimple Lie algebra. Then there exist ideals
g1, · · · , gr of g which are simple (as Lie algebras), such that g = g1⊕· · ·⊕gr.
Every simple ideal of g coincide with one of gi. Moreover, the Killing form
of gi is the restriction of k to gi × gi.

Proposition 6.5. Let g be the Lie algebra associated to (1). Then g is
isomorphic to the special linear Lie algebra of order 3, that is, sl(3,R).

Proof. This proof is based on the Theorem 6.1. Due to that theorem the
Lie algebra g is semisimple by the Cartan criterion, the Proposition 6.2,
and the classification of simple Lie algebras. In fact, if we begin with the
first term of the decomposition of the semisimple Lie Algebra g, namely
g1, we get a simple Lie subalgebra and therefore the dimension of g must
be greater than 2, so we have two cases: sl(2) or so(3), in that order. For
instance, if g1 = sl(2), which has dimension three, we need to consider other
algebras to attain the dimension 8, but it is not possible precisely because
of the dimension (since there are no 5 dimensional simple Lie algebras).
Continuing with this argument, if we add another sl(2), then it only remains
to add a 2-dimensional simple Lie algebra, so all dimensions can sum up
to 8, but such algebra two dimensional does not exist. Therefore, in this
case, the Lie algebra is indecomposable and the only option is that the Lie
algebra is sl(3). In the other hand, If we start with the the first term of
the decomposition as so(3), we can consider a similar argument and get to
the same conclusions.
Another important fact to be considered is that there are no 8 dimensional
Lie algebra in the class of so(n). Consequently, the Lie algebra g is
isomorphic to sl(3), and the statement is proved.
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Remark 6.1. To be more clear, we start with the decomposition g =
g1 ⊕ g2 ⊕ g3, for instance, and then we choose the first g1 to be a simple
algebra of the least possible dimension. Then, we know that there are two
3-dimensional Lie algebras, which are: sl(3) and so(3). To complete the
dimension of g, we consider other simple Lie algebras among the previously
stated, and fill in the decomposition of g, looking always at the dimension
that remains to be filled in. We continue adding algebras until we reach
the dimension of g. This procedure forces g to be equal to g1 = sl(3).

7 Conclusion

Using the Lie symmetry group of (3), we calculated the optimal algebra,
as it was presented in Proposition 3.1. Making use of some elements of
the optimal algebra, it was possible to obtain some invariant solutions as it
was shown in Table 4. Both the invariant solutions of numeral 1, 2 and the
family of implicit invariant solutions corresponding to the numerals 5− 10
from Table 4, do not appear in the literature known until today.

It has been shown the variational symmetries for (1) in (16) with its
corresponding conservation laws (17). The Lie algebra associated to the
equation (1) is a semisimple algebra as it is proved in Proposition 6.2 and
the signature of the Cartan-Killing form is (5, 3). The Proposition 6.4
showed that the Lie algebra associated to the equation (1) has, at least,
one Lie subalgebra isomorphic to sl(2,R). Lastly, Proposition 6.5 showed
that the Lie algebra associated to the equation (1) is isomorphic to sl(3)
and therefore, the goal initially proposed was achieved.

For future works, numerical methods could be used to solve the implicit
equations shown in numerals 5−10 from the Table 4. An alternative line of
work would be to use the Lie symmetry group to calculate the λ-symmetries
of (1), and, thus, explore more conservation laws for (1). Equivalence
group theory could be also considered to obtain preliminary classifications
associated to a complete classification of (1).
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