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Abstract
Deep learning has become increasingly popular and widely applied to com-
puter vision systems. Over the years, researchers have developed various
deep learning architectures to solve different kinds of problems. However,
these networks are power-hungry and require high-performance comput-
ing (i.e., GPU, TPU, etc.) to run appropriately. Moving computation to
the cloud may result in traffic, latency, and privacy issues. Edge com-
puting can solve these challenges by moving the computing closer to the
edge where the data is generated. One major challenge is to fit the high
resource demands of deep learning in less powerful edge computing de-
vices. In this research, we present an implementation of an embedded
facial recognition system on a low cost Raspberry Pi, which is based
on the FaceNet architecture. For this implementation it was required
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the development of a library in C++, which allows the deployment of
the inference of the Neural Network Architecture. The system had an
accuracy and precision of 77.38% and 81.25%, respectively. The time
of execution of the program is 11 seconds and it consumes 46 [kB] of
RAM. The resulting system could be utilized as a stand-alone access con-
trol system. The implemented model and library are released at https:
//github.com/cristianMiranda-Oro/FaceNet_EmbeddedSystem.
Keywords: Deep learning; facial recognition; embedded systems; faceNet;
googLeNet; labeled faces in the wild.

Sistema de reconocimiento facial sin
reentrenamiento para nuevos usuarios

Resumen
El aprendizaje profundo se ha vuelto cada vez más popular y se aplica
ampliamente a los sistemas de visión por computadora. A lo largo de los
años, los investigadores han desarrollado varias arquitecturas de aprendi-
zaje profundo para resolver diferentes tipos de problemas. Sin embargo,
estas redes consumen mucha energía y requieren computación de alto ren-
dimiento (es decir, GPU, TPU, etc.) para funcionar correctamente. Mover
la computación a la nube puede resultar en problemas de tráfico, latencia
y privacidad. La computación en el borde puede resolver estos desafíos,
pues permite acercar el proceso de computación al lugar donde se generan
los datos. Un desafío importante es adaptar las altas demandas de recursos
del aprendizaje profundo a dispositivos de computación de borde menos
potentes. En esta investigación, presentamos una implementación de un
sistema de reconocimiento facial integrado en una Raspberry Pi de bajo
costo, la cual está basada en la red FaceNet. Esta implementación requirió
el desarrollo de una biblioteca en C++ que puede describir la inferencia de
la arquitectura de la red neuronal FaceNet. El sistema tuvo una exactitud
y precisión de 77.38% y del 81.25%, respectivamente. El tiempo de ejecu-
ción de cada inferencia es de 11 segundos y consume 46 [kB] de RAM. El
sistema resultante podría utilizarse como un sistema de control de acceso
independiente. El modelo y la librería implementados están disponibles en
https://github.com/cristianMiranda-Oro/FaceNet_EmbeddedSystem.

Palabras clave: Deep learning; reconocimiento facial;
sistemas embebidos; faceNet; googLeNet; labeled faces in the wild.

1 Introduction
A person’s face contains physical information that can be used for security
and access control applications. The main motivation for facial recognition
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is because it is considered a passive and non-intrusive system. Most of
the biometric data needs to be collected by special hardware such as a
fingerprint scanner, a palm print scanner, a DNA analyzer, etc [1]. Face
recognition does not require physical touch, it is less intrusive than other
biometric systems.

A vast amount of work has been done to make facial recognition al-
gorithms more reliable and accurate. In recent years, deep learning ap-
proaches have dominated the facial recognition field due to their high per-
formance in learning discriminative features. As an example, the solution
proposed in [2] achieved a precision of 99.63 % in the Labeled Faces in the
Wild (LFW) [3] dataset using a deep learning system called FaceNet with
almost 7.5M parameters. This architecture learns a mapping of facial im-
ages to a compact Euclidean space where the distances correspond directly
to a measure of facial similarity. Another deep learning solution is [4] that
attains an accuracy of 99.52% in the same LFW dataset using a VGGNet-16
neural network architecture, with 138M parameters. This work implements
a new loss function called range loss, designed to decrease intra-personal
variations while increasing inter-personal differences in extremely unbal-
anced data. Also, the authors in [5] propose a new loss function called
Additive Angular Margin Loss (ArcFace), which incorporates margins in
a well-established loss function to maximize face class separability. They
use the ResNet100 neural network with 65M parameters and obtain an
accuracy of 99.83% in the LFW dataset.

The implementation of these state-of-the-art neural networks need the
leverage of high-performance and power-hungry hardware [6]. These huge
demands of computational and memory resources impedes their deploy-
ment in edge devices (e.g. Microcontrollers, SoC, etc.).

Bringing the computation closer to the location where it is needed (com-
putation at the egde) can improve the response times, save bandwidth and
minimize the data transmission time. Processing data at the edge also pre-
serves the privacy of the users, since there is no need to upload the data to
the cloud. This means that the data is processed at the source. Cameras,
speakers, microphones, and multiple sensors are all located at the edge of
the network, which provides a great opportunity of running deep learning
algorithms here [7]. Edge devices are inexpensive, small, and flexible hard-
ware devices. They are characterized by their low energy consumption and
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reduced cost.
In this work, we present an implementation of an embedded facial recog-

nition system on a Raspberry Pi. The model is based on the FaceNet ar-
chitecture. The system achieved an accuracy and precision of 77.38% and
81.25%, respectively. The time of execution of each inference is around 11
seconds and only 46 [kB] of RAM are required.

The rest of this paper is structured as follows. Section 2 describes the
related work. Section 3 shows the FaceNet generalities and the structure
of a facial recognition system. In section 4, we present the various methods
used to construct the system. The metrics utilized and their experimental
results are presented in section 5. Finally, section 6 draws conclusions of
our work and indicates future studies.

2 Related work

Generally, a facial recognition system is composed of three basic steps: (1)
face detection, (2) feature extraction, and (3) face recognition [8]. The
face detection step locates the face that appears in the image. The feature
extraction step extracts a feature vector from the detected face. This fea-
ture vector is obtained by v = f(x) where x is the image of the detected
face and f(·) is the deep neural network. Finally, the face recognition step
compares the extracted features with all registered faces and verifies if it is
part of the database [9].

Annalakshmi et al., [10] introduced algorithms using the enhanced lo-
cal binary pattern (SLBP) and histogram of oriented gradients (HOG) to
classify the human gender with a SVM classifier. Over the LFW database,
their proposed hybrid method achieved an accuracy of 95.7%. They at-
tained an accuracy of 99.1% with the FERET dataset. Xi et al. [11] have
introduced a new unsupervised deep learning-based technique, called local
binary pattern network (LBPNet), to extract hierarchical representations
of data. The LBPNet maintains the same topology as the convolutional
neural network (CNN). With an accuracy of 94.04% on LFW, it shows that
LBPNet is comparable to other unsupervised techniques. Arigbabu et al.
[12] proposed a novel face recognition system based on the Laplacian filter
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and the pyramid histogram of gradient (PHOG) descriptor. They reached
an accuracy of 88.50% on LFW. In addition, a support vector machine
(SVM) was used with different kernel functions as the recognition step in
the system.

To achieve better results, computer vision has moved towards Convo-
lution Neural Networks (CNN), which is a deep learning approach and
state-of-the-art in computer vision. The authors in [13] introduced a new
approach using texture analysis and CNNs to detect face liveness, a tech-
nique that is used for face spoofing attacks. Their enhanced architecture
based on the inception version 4 network obtained 100% accuracy on the
NUAA Photograph Impostor dataset for face liveness detection. An pair-
wise differential siamese network for occluded face recognition is proposed
by Song et al. [14]. The AR dataset that contains images with natural oc-
clusions was used for evaluation. Their proposed method outperformed the
state-of-the-art algorithms with an accuracy of 99.72% and 100% on the
scarf and sunglass subsets of the AR dataset, respectively. Their method
also achieved an accuraccy of 99.2% on the LFW dataset.

3 FaceNet

FaceNet is a face recognition, verification and clustering neural network [2].
The authors of this model presented several models with the same over-
arching name called FaceNet. They discussed two different deep network
architectures: The Zeiler&Fergus style networks [15] and the Inception type
networks [16]. This last model is based on the on GoogLeNet and has 20x
fewer parameters and 5x fewer FLOPS when compared to other proposed
models in [2]. We used this model architecture for our study because of its
reduction in size.

FaceNet maps a face or image to a 128-dimensional feature vector in
a Euclidean space. Let x be an image, the mapping is represented by
f(x) ∈ R128, where f is the embedding function, i.e., the GoogLeNet based
neural network. The mapping can be of any dimension, but in this system,
we used a length of 128 as recommended in [2]. Additionally, the embedding
is an element of a 128-dimensional hypersphere, i.e., ‖f(x)‖2 = 1. This
is beneficial in the context of nearest-neighbor classification. The distance
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between each mapping is correlated to a measure of face similarity. In other
words, the distance between each feature vector can be used to determine
the identity of a person.

The network is trained using the triplet loss function [17, 18]. This
triplet consists of 3 images: an anchor (xai ), a positive (xpi ) and a negative
(xni ). The anchor and the positive images correspond to the same identity.
The negative image has a different identity than the anchor image. The
triplet loss function, equation 1, tries to enforce a margin between each
pair of faces from one person to all other faces in the embedding space.
Equation 1 tries to bring the term, ‖f(xai )− f(x

p
i )‖

2
2−‖f(x

a
i )− f(xni )‖

2
2+α,

close to zero. This means the distances between the embeddings of the
anchor images and the positive images will tend to be smaller than distances
between the embeddings of the anchor images and the negative images by a
margin of α, i.e. ‖f(xai )− f(x

p
i )‖

2
2+α = ‖f(xai )− f(xni )‖

2
2. The parameter

α is a margin that is enforced between positive and negative pairs. This
process happens during training and can be observed in Figure 1. In hard
triplets, the negative image is very close to the anchor, and the positive
image is very far from it. We used these hard triplets during the training
process. Figure 2 shows the block diagram of FaceNet’s architecture during
the training process which involves the triplet loss step.

N∑
i

[
‖f(xai )− f(x

p
i )‖

2
2 − ‖f(x

a
i )− f(xni )‖

2
2 + α

]
+

(1)

Figure 1: The result of the triplet loss training for the FaceNet models. The
distance between the anchor and positive embeddings reduce while the distance
between the anchor and positive embeddings maintain a distance determined by
the parameter α. [2]
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Figure 2: FaceNet’s overall architecture for training. The triplet loss uses the
embeddings for training. The inference of the FaceNet models doesn’t include the
triplet loss step. [2]

4 Methods

4.1 Dataset

There are several datasets for face recognition. The Labeled Faces in the
Wild (LFW) dataset [3] consists of 13,233 images of unique 5,749 per-
sons of different ages. This dataset is widely used for training the various
methodologies of face recognition. It is also used for the evaluation of the
proposed solutions. Youtube Faces DB [19] dataset has gained popularity
in the face recognition community. It is made up of face images that are
found from frames of videos. The data set contains 3,425 videos of 1,595
different people.

CelebFaces Attributes Dataset (CelebA) [20] is a large-scale face at-
tributes dataset. It contains 202,599 face images and 10,177 identities. The
images in this dataset cover large pose variations and background clutter.
The dataset can be employed as the training and test sets for computer
vision tasks, such as face recognition, face attribute recognition, and face
detection. We chose the CelebA dataset for the training of the neural net-
work because of the higher amount of unique images that each identity had
as compared to other facial recognition datasets.

Our system uses the Viola-Jones algorithm [21] in the detection step.
Retraining was done to adjust the network to these characteristics. The
images were processed using the OpenCV libraries [22], which allow us to
locate the person’s face in the image and crop it out. We retrained the
model with a training set of 4150 images. In the training set, each identity
had an average of 26 photos. Figure 3 shows a sample of the training
set. We use a GoogLeNet [16] pretrained model, which was downloaded
from [23]. This model receives as input an image of 96 × 96 × 3 pixels.
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Figure 3: Sample from the CelebA Dataset that was used for retraining. [20]

The size of the retrained GoogLeNet model is around 15[MB]. The model
was trained using the triple loss function (Equation 1). Hard triplets were
used. We used an Adam optimizer with a learning rate of 10−3 and a batch
of 325 images. The number of epochs was 50. Table 1 shows each layer of
the implemented model on the microcontroller. The table also shows each
layer’s respective output size and number of parameters.

4.2 Deep learning library

We created our own library to implement the model on the device. One
motivation for creating this library is to offer the possibility to deploy Deep
Learning Models on any edge device that supports the C language. Our
library accepts the parameters of the model in a header file (.h). The
retrained model is converted to a .h5 file using TensorFlow. Since the
weights come from a .h5 file, a python script converts them to a .h file (for
C language execution). The number of decimals for each parameter in the
network is truncated to six.

Once we have the weights, we build the neural network shown in Table 1
in C. The library developed in C is used to describe each layer in the model.
This process converts the model as a function using C++. The library
uses the NHWC format [24] for deep learning volumes. Table 2 shows
all the functions created with their corresponding description and input
parameters. The library dynamically manages RAM used in the process.
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Table 1: Details of the GoogLeNet Based Architecture

Type Output Parameters
input 96x96x3 0

Zero_Padding2d 102x102x3 0
Conv2D 48x48x64 9472

BatchNormalization 48x48x64 256
Activation 48x48x64 0

Zero_padding2d 50x50x64 0
max_pooling2d 24x24x64 0

Conv2D 24x24x64 4160
BatchNormalization 24x24x64 256

Activation 24x24x64 0
zero_padding2d 26x26x64 0

Conv2D 24x24x192 110784
BatchNormalization 24x24x192 768

Activation 24x24x192 0
zero_padding2d 26x26x192 0
max_pooling2d 12x12x192 0
Inception_3a 12x12x256 165168
inception_3b 12x12x320 229568
inception_3c 6x6x640 399712
inception_4a 6x6x640 548608
inception_4e 3x3x1024 719840
inception_5a 3x3x96 794688
inception_5b 3x3x736 665664

average_pooling2d 1x1x736 0
flatten 736 0

dense_layer 128 94336
L2 Normalization 128 0

Total 3743280
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The "free memory pointer" parameter in Table 2 gives the correspond-
ing function the signal to clear or not clear the memory it creates. This
parameter takes the values of 1 or 0. This library and the steps on how to
use it are available on GitHub [25].

4.3 Back-end

Figure 4: Diagram of the facial recognition system. The steps for face detection
and image resizing are followed by the inference of the DNN which generates a
128-dimensional embedding. This vector is finally compared with the database
(embeddings of the anchor images) to conclude the identity of the input image.

The back-end part of the system was implemented in C++. Figure 4
shows a block diagram of our facial recognition system. The explanation
of each block is described in the following. First, we use a detection al-
gorithm from OpenCV to obtain the face of the person. This algorithm
uses the Viola-Jones method [21]. The output of this block is the image
of the detected face. The dimensions of this image are variable due to the
multiple windows that the Viola-Jones algorithm uses. The next step is
the resizing of the detected face. The input of this algorithm is an image
of any dimension, and the output is an image of size 96 × 96 × 3 pixels.
After the image has been resized, it passes through the deep neural network
model (Table 1). Its output is a 128-dimensional feature vector. Finally,
the identification of this encoding uses a database that has other feature
vectors stored inside of it.
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Table 2: Description and parameters of the functions in the deep learning library

Function Description and Parameters

matrix_NHWC_alloc
Allocate memory for a NHWC data
structure
kernel or filter, width, height, and
channels

cmo_lib_free Free up memory
Shape pointer

cmo_NHWC_l2_normalize Apply L2 normalization on a volume
Input volume

cmo_NHWC_MaxPooling Apply max pooling
Input volume, window width, window
height, horizontal stride, vertical stride,
and free memory pointer

cmo_NHWC_AveragePooling Apply average pooling on a volume
Input volume, window width, window
height, horizontal stride, vertical stride,
free memory pointer

cmo_NHWC_conv Convolution between two volumes
Input volume, input kernel, input bias,
horizontal stride, vertical stride, padding
type, and free memory pointer

cmo_NHWC_dense Fully connected layer
Input volume, kernel, bias, and free
memory pointer

cmo_NHWC_batch_normalize Apply batch normalization on a volume
Input volume, scale, and offset

cmo_NHWC_concat Concatenates 2 volumes in order
Volumes, free memory pointer

cmo_NHWC_padding Adds padding to the volume
Input image, padding left, padding right,
padding up, padding down, and free
memory pointer

cmo_NHWC_ActivationRelu Apply Relu activation to layer function
Input volume
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This Identification step consists of comparing the Euclidean distance
between the generated encoding and the database’s encodings. The system
identifies the person when the smallest distance found is within a threshold.
The identity corresponding to this encoding is the output of the system.

4.4 Front-end

The Front-End consists of an interface between the user and the facial
recognition system (Listing 4.4).

The algorithm was developed in C++ and has two processes. The first
one allows the addition of a person into the database. This process starts by
taking a picture of the person and storing the corresponding feature vector
into the database (see Section 3). The second process allows the recognition
of the face. This process also starts by taking a picture of the person, which
passes through the system, then the generated feature vector goes through
the identification step described in section 4.3. Finally, the name of the
identified person is displayed on the monitor. The database mentioned
above consists of a list of feature vectors (embeddings) corresponding to
the anchor images of the identities registered. By running the first process
an image is taken (anchor image) and the feature vector corresponding
to that anchor image, which is generated by running the inference of the
system, is added to the database.

Listing 1: Front-end Pseudo code
while (True )

Ask the user to choose an opt ion
Read opt ion
while ( opt ion == 1 ) | | ( opt ion == 2 ) :

switch opt ion
1 : Enro l l f a c e :

Request name .
Take the photo .
Generate the encoding .
Save the encoding in
the database .

2 : Detect f a c e :
Take the photo .
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Generate the encoding .
Ca l cu la te L2 d i s t ance
o f a l l r e g i s t e r e d us e r s .
Choose the user with the
sma l l e s t d i s t anc e with in
the th r e sho ld .
Present the i d e n t i f i e d
user .

end switch
Ask the user to choose an opt ion
Read opt ion

end while
end while

5 Results

In this work, we used the Raspberry Pi 3B + model, which is a credit-
card-sized single-board computer. This model comprises a 1 GB of RAM
memory with four USB ports and a 10/100 Ethernet port. A 5MP Rasp-
berry Pi camera module was used.

5.1 Test set

To evaluate the performance of the system, we collected 103 images from
25 different individuals. The test set was distributed as follows, 82 images
belonged to registered users and 21 images were imposters or unregistered
users. The 82 images belonged to 15 individuals and each identity had
between 3 and 7 images. The database of the system consisted of the
feature vectors for the anchor images of these 15 individuals.

The pictures were taken from a distance of around 30[cm] from the
camera. The dataset is formed by males and females with ages ranging
between 23-85 years.

5.2 Model performance evaluation

The performance of a facial recognition system for identification scenarios
can be evaluated based on the results obtained by the identification step

ing.cienc., vol. 17, no. 34, pp. 77–95, julio-diciembre. 2021. 89|



A Low-Cost Raspberry Pi-based System for Facial Recognition

(see section 4.3). Let n be the number of identities and samplei be the
number of face samples of an identity i, the total number of samples is
Total =

∑n
i=1 samplei.

5.2.1 Confusion matrix We use a confusion matrix to measure the
model performance. We evaluate the system for different values of the
threshold (see section 4.3). This parameter represents a distance thresh-
old that determines whether an embedding is close enough to the anchor
embedding to conclude that the embedding in question corresponds to the
identity of the anchor embedding. Table 3 shows the results found for each
case. In Table 3, the row in bold corresponds to the model performance for
a threshold of 0.55. This threshold value achieved the highest F1 score of
0.793 for the system. For a threshold value of 0.55, the accuracy and pre-
cision were 77.38% and 81.25%, respectively. As the threshold increased,
the values of the true positive rate (TPR) also increased. This behavior
is because there was a less strict requirement on deciding a match for the
person. Similarly, the number of claimed matches and the value of the false
positive rate (FPR) increased as the threshold increased .

5.2.2 ROC curve The machine learning community often uses the ROC
area under the curve AUC statistic for model comparison [26]. This prac-
tice is questioned because AUC estimates are noisy and suffer from other
problems [27]. Nonetheless, the coherence of AUC is a respected measure
of classification performance.

Figure 5 shows the values of the TPR and the FPR for different values
of the threshold parameter. The AUC of the ROC curve is 0.8. The blue
dashed line in Figure 5 is an approximated curve for the values. The blue
squares represent the performance of the system found for a value of the
threshold. The threshold used for Figure 5 ranges between 0.2 and 1. Due
to the size of the dataset, the blue squares do not form a smooth curve.

5.2.3 Processing Time of the System We present the average time
that the system spent on various tasks. Table 4 shows the average execution
time of both processes (see section 4.4) and the inference of the GoogLeNet
based model on the Raspberry Pi. The table shows that most of the run
time of both processes is spent by the inference of the model.
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Table 3: Results of the classification for the facial recognition system.

Threshold TPR % FPR % Pre. % Acc. % F1
0.20 4.69 0.00 100.00 27.38 0.43
0.25 15.63 0.00 100.00 35.71 0.53
0.30 31.75 4.76 95.24 47.62 0.63
0.35 50.79 4.76 96.97 61.90 0.76
0.40 59.68 18.18 90.24 65.48 0.76
0.45 68.33 33.33 83.67 67.86 0.75
0.50 79.66 48.00 79.66 71.43 0.75
0.55 88.14 48.00 81.25 77.38 0.79
0.60 93.10 53.85 79.41 78.57 0.79
0.65 94.83 65.38 76.39 76.19 0.76
0.70 100.00 65.38 77.33 79.76 0.79
0.75 100.00 69.23 76.32 78.57 0.77
0.80 100.00 73.08 75.32 77.38 0.76
0.85 100.00 80.77 73.42 75.00 0.74
0.90 100.00 84.62 72.50 73.81 0.73
0.95 100.00 88.46 71.60 72.62 0.72
1.00 100.00 88.46 71.60 72.62 0.72
1.05 100.00 92.31 70.73 71.43 0.71
1.10 100.00 96.15 69.88 70.24 0.70
1.15 100.00 100.00 69.05 69.05 0.69

Table 4: Average time for the various tasks that the facial recognition system is
capable of carrying out.

Avg. Time [s]
Enrollment Process 10.78
Recognition Process 10.34

Model Inference 9.26
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Figure 5: The corresponding ROC curve of the classification results.

5.2.4 Other Aspects Apart from the test set that the system was eval-
uated on, the system performed poorly on images of faces with glasses. The
majority of these images were not identified correctly.

6 Conclusions

We implemented a facial recognition system based on a deep learning ar-
chitecture GoogLeNet on a Raspberry Pi model 3B+. The neural network
maps each input to a Euclidean hypersphere where the distance between
each mapping correlates to a measure of face similarity. A library developed
in the C describes the inference of the GoogLeNet architecture.

We evaluate the system on a test set of 103 images. The pictures were
collected using the Raspberry Pi camera module. The algorithm had an
accuracy and precision of 77.38% and 81.25%, respectively, on a group of
15 people registered in the database.

A drawback of our system is that the persons are required not to use
glasses because our results suggest that the individuals with glasses had a
higher probability of not being identified correctly.

The inference time of the GoogLeNet based model on the Raspberry Pi
was 9.26 s.
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For future studies, the number of images in the training set can be
treated as a hyperparameter. Likewise, the effect of the size of the input
image on the model would be interesting to see. Furthermore, optimization
of the C library is a task that affects the performance of the system.

References

[1] H. H. Lwin, A. Khaing, and H. Tun, “Automatic door access system using
face recognition,” International Journal of Scientific & Technology Research,
vol. 4, no. 6, pp. 294–299, 2015. http://www.ijstr.org/final-print/june2015/
Automatic-Door-Access-System-Using-Face-Recognition.pdf 79

[2] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding
for face recognition and clustering,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 815–823. 79, 81, 82,
83

[3] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database for studying face recognition in unconstrained
environments,” University of Massachusetts, Amherst, Tech. Rep. 07-
49, October 2007. https://hal.inria.fr/inria-00321923/file/Huang_long_
eccv2008-lfw.pdf 79, 83

[4] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin
loss for deep face recognition,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019. 79

[5] X. Zhang, Z. Fang, Y. Wen, Z. Li, and Y. Qiao, “Range loss for deep
face recognition with long-tailed training data,” in Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Oct 2017.
https://arxiv.org/pdf/1611.08976.pdf 79

[6] J. Benito-Picazo, E. Domínguez, E. J. Palomo, E. López-Rubio, and J. M.
Ortiz-de Lazcano-Lobato, “Deep learning-based anomalous object detection
system powered by microcontroller for ptz cameras,” in 2018 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 1–7.
https://doi.org/10.1109/IJCNN.2018.8489437 79

[7] S. Voghoei, N. Hashemi Tonekaboni, J. G. Wwallace, and H. R.
Arabnia, “Deep learning at the edge,” 2018 International Conference
on Computational Science and Computational Intelligence (CSCI), 2018.
https://doi.org/10.1109/csci46756.2018.00177 79

ing.cienc., vol. 17, no. 34, pp. 77–95, julio-diciembre. 2021. 93|

http://www.ijstr.org/final-print/june2015/Automatic-Door-Access-System-Using-Face-Recognition.pdf
http://www.ijstr.org/final-print/june2015/Automatic-Door-Access-System-Using-Face-Recognition.pdf
https://hal.inria.fr/inria-00321923/file/Huang_long_eccv2008-lfw.pdf
https://hal.inria.fr/inria-00321923/file/Huang_long_eccv2008-lfw.pdf
https://arxiv.org/pdf/1611.08976.pdf
https://doi.org/10.1109/IJCNN.2018.8489437
https://doi.org/10.1109/csci46756.2018.00177


A Low-Cost Raspberry Pi-based System for Facial Recognition

[8] V. A, D. Hebbar, V. S., K. Balasubramanya, Murthy, and N. Subramanyam,
“Two novel detector-descriptor based approaches for face recognition using
sift and surf,” Procedia Computer Science, vol. 70, pp. 185–197, 12 2015.
https://doi.org/10.1016/j.procs.2015.10.070 80

[9] Y. Kortli, M. Jridi, A. Falou, and M. Atri, “Face recognition systems: A
survey,” Sensors, vol. 20, p. 342, 01 2020. https://doi.org/10.3390/s20020342
80

[10] M. Annalakshmi, S. M. M. Roomi, and A. S. Naveedh, “A hybrid technique
for gender classification with slbp and hog features,” Cluster Computing,
vol. 22, no. S1, pp. 11–20, 2018. https://doi.org/10.1007/s10586-017-1585-x
80

[11] M. XI, L. Chen, D. Polajnar, and W. Tong, “Local binary pattern network:
A deep learning approach for face recognition,” in 2016 IEEE international
conference on Image processing (ICIP). IEEE, 2016, pp. 3224–3228. 80

[12] O. A. Arigbabu, S. M. Syed Ahamad, W. A. Wan Adnan, and S. Mahmood,
“Soft biometrics: Gender recognition from unconstrained face images using
local feature descriptor,” Journal of Information and Communication Tech-
nology, 2015. 80

[13] R. Koshy and A. Mahmood, “Optimizing deep cnn architectures for face
liveness detection,” Entropy, vol. 21, no. 4, p. 423, 2019. 81

[14] L. Song, D. Gong, Z. Li, C. Liu, and W. Liu, “Occlusion robust face
recognition based on mask learning with pairwise differential siamese
network,” 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 2019. https://doi.org/10.1109/iccv.2019.00086 81

[15] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” 2013. 81

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015. https://doi.org/10.1109/cvpr.2015.7298594 81, 83

[17] M. Schultz and T. Joachims, “Learning a distance metric from
relative comparisons,” in Advances in Neural Information Pro-
cessing Systems, S. Thrun, L. Saul, and B. Schölkopf, Eds.,
vol. 16. MIT Press, 2004. https://proceedings.neurips.cc/paper/2003/
file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf 82

|94 Ingeniería y Ciencia

https://doi.org/10.1016/j.procs.2015.10.070
https://doi.org/10.3390/s20020342
https://doi.org/10.1007/s10586-017-1585-x
https://doi.org/10.1109/iccv.2019.00086
https://doi.org/10.1109/cvpr.2015.7298594
https://proceedings.neurips.cc/paper/2003/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf


Cristian Miranda Orostegui, Alejandro Navarro, AndrÃ c©s ManjarrÃ c©s GarcÃa and
Carlos Augusto Fajardo Ariza

[18] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large margin
nearest neighbor classification,” J. Mach. Learn. Res., vol. 10, pp. 207–244,
Jun. 2009. https://doi.org/10.5555/1577069.1577078 82

[19] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained
videos with matched background similarity,” CVPR 2011, 2011. https:
//doi.org/10.1109/cvpr.2011.5995566 83

[20] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the
wild,” 2015. 83, 84

[21] P. Viola and M. Jones, “Robust real-time face detection,” in Proceedings
Eighth IEEE International Conference on Computer Vision. ICCV 2001,
vol. 2, 2001, pp. 747–747. https://doi.org/10.1109/iccv.2001.937709 83, 86

[22] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000. 83

[23] Coursera. Neural networks and deep learning. https://www.coursera.org/
learn/neural-networks-deep-learning 83

[24] GitHub. onednn: Understanding memory formats. https://oneapi-src.hub.
io/oneDNN/dev_guide_understanding_memory_formats.html 84

[25] C. M. Orostegui. Facenet_embeddedsystem. https://github.com/
cristianMiranda-Oro/FaceNet_EmbeddedSystem 86

[26] J. A. Hanley and B. J. McNeil, “A method of comparing the
areas under receiver operating characteristic curves derived from the
same cases.” Radiology, vol. 148, no. 3, pp. 839–843, 1983. https:
//doi.org/10.1148/radiology.148.3.6878708 90

[27] B. Hanczar, J. Hua, C. Sima, J. Weinstein, M. Bittner, and E. R. Dougherty,
“Small-sample precision of roc-related estimates,” Bioinformatics, vol. 26,
no. 6, pp. 822–830, 2010. https://doi.org/10.1093/bioinformatics/btq037 90

ing.cienc., vol. 17, no. 34, pp. 77–95, julio-diciembre. 2021. 95|

https://doi.org/10.5555/1577069.1577078
https://doi.org/10.1109/cvpr.2011.5995566
https://doi.org/10.1109/cvpr.2011.5995566
https://doi.org/10.1109/iccv.2001.937709
https://www.coursera.org/learn/neural-networks-deep-learning
https://www.coursera.org/learn/neural-networks-deep-learning
https://oneapi-src.hub.io/oneDNN/dev_guide_understanding_memory_formats.html
https://oneapi-src.hub.io/oneDNN/dev_guide_understanding_memory_formats.html
https://github.com/cristianMiranda-Oro/FaceNet_EmbeddedSystem
https://github.com/cristianMiranda-Oro/FaceNet_EmbeddedSystem
https://doi.org/10.1148/radiology.148.3.6878708
https://doi.org/10.1148/radiology.148.3.6878708
https://doi.org/10.1093/bioinformatics/btq037

	Introduction
	Related work
	FaceNet
	Methods
	Dataset
	Deep learning library
	Back-end
	Front-end

	Results
	Test set
	Model performance evaluation
	Confusion matrix
	ROC curve
	Processing Time of the System
	Other Aspects


	Conclusions

