plication of Option-
Pricing Theory: Twenty-
Five Years Later ©

he news from Stockholm that the
prize in economic sciences had
been given for option-pricing
theory provided unique and signal
recognition to the rapidly advancing but still
relatively new discipline within economics
which relates mathematical finance theory and
finance practice. The special sphere of finance
within economics is the study of allocation and
deployment of economic resources, both
spatially and across time, in an uncertain
environment. To capture the influence and
interaction of time and uncertainty effectively

Robert C. Merton. Graduate School of Business

. Administration, Harvard University, Boston, NU
02163, USA and Long-Term Capital Management,

t L.P, Greenwich, CT 06830. Nobel Prize Economy
1997.

(*) Nobel Lecture, December 9, 1997.
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requires sophisticated mathematical and
computational tools. Indeed, mathematical
models of finance contain some truly elegant
applications of probability and optimization
theory. These applications challenge the
most powerful computational technologies.
But, of course, all that is elegant and
challenging in science need not also be
practical; and surely, not all that is practical
in science is elegant and challenging. Here we
have both. In the time since publication of our
early work on the option-pricing model, the
mathematically complex models of finance
theory have had a direct and wide-ranging
influence on finance practice. This conjoining
of intrinsic intelectual interest with extrinsic
application is central to research in modern

finance.

It was not always thus. The origins of much
of the mathematics in modern finance can be
traced to Louis Bachelier’s 1900 dissertation
on the theory of speculation, framed as an
option-pricing problem. This work marks the
twin births of both the continuous time
mathematics of stochastic processes and the
continuous-time economics of derivative-
security pricing. Kiyoshi Itd was greatly
influenced by Bachelier’s work in his
development in the 1940s and early 1950s of
the stochastic calculus, later to become an

essential mathematical tool in finance. Paul
Samuelson’s theory of rational warrant
pricing, published in 1965, was also motivated
by the same piece. However, Bachelier’s
important work was largely lost to financial
economists for more than a half century.
During most of that period, mathematically
complex models with a strong influence on
practice were not at all the hall marks of
finance theory. Before the pioneering work of
Markowitz, Modigliani, Miller, Sharpe, Lintner,
Fama, and Samuelson in the late 1950s and
1960s, finance theory was little more than a
collection of anecdotes, rules of thumb, and
shuffling of accounting data. It was not until
the end of the 1960s and early 1970s that
models of finance in academe became
considerably more sophisticated, involving
both the intertemporal and uncertainty
dimensions of valuation and optimal
decision-making. The new models of dynamic
portfolio theory, intertemporal capital asset
pricing, and derivative-security pricing
employed stochastic differential and integral
equations, stochastic dynamic programming,
and partial differential equations. These
mathematical tools were a quantum level
more complex than had been used in finance
before and they are still the core tools
employed today.

The most influential development in terms of
impact on finance practice was the Black-
Scholes model for option pricing. Yet
paradoxically -the mathematical model was
developed entirely in theory, with essentially
no reference to empirical option-pricing data
as motivation for its formulation. Publication
of the model brought the field to almost
immediate closure on the fundamentals of

—i-
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option-pricing theory. At the same time, it
provided a launching pad for refinements of
the theory, extensions to derivative-security
pricing in general, and a wide range of other
applications, some completely outside the
realm of finance. The Chicago Board Options
Exchange(CBOE),the first public options
exchange, began trading in April 1973, and by
1975, traders on the CBOE were using the
their
option positions. It was so widely used that,

model to both price and hedge
in those pre-personal-computer days, Texas
Instruments sold a hand-held calculator
specially programmed to produce Black-
Scholes option prices and hedge ratios. That
all the

impressive, as the mathematics used in the

rapid adoption was more
model were not part of
the standard mathema-
tical training of either
academic economists or

practitioner traders.

Academic finance research of the 1960s
including capital asset pricing, performance
and risk measurement, and the creation
of the first large-scale data bases for security
prices permitting tests of old theories and
motivations for new ones have certainly
influenced subsequent finance practice. Still
the speed of adoption and the intensity of that
influence was not comparable to the influence
of the option model. There are surely several
possible explanations for the different rates of
adoption in the 1960s and the 1970s. My
hypothesis is that manifest «need» determined
that difference. In the 1960s, especially in the
United St.ateé, financial markets exhibited
unusually low volatility: the stock market
rose steadily, interest rates were relatively

stable, and exchange rates were fixed. Such a
market environment provided investors and
financial-service firms with little incentive to
adopt new financial technology, especially
technology designed to help manage risk.
However, the 1970’s experienced several
events that caused both structural changes
and large increases in volatility. Among the
more important events were: the shift from
fixed to floating exchange rates with the fall
of Bretton Woods and the devaluation of the
dollar; the world oil-price shock with the
creation of OPEC; double-digit inflation and
interest rates in the United States; and the
extraordinary real-return decline in the U.S.
stock market from a peak of around 1050 on
the Dow Jones Industrial Average in the
beginning of 1973 to
about 580 at the end of
1974. As a result, the
increased demand for
managing risks in a
volatile and structurally
different economic environment contributed to
the major success of the derivative-security
exchanges created in the 1970s to trade listed
options on stocks, futures on major
currencies, and futures «on fixed- income
instruments. This success in turn increased
the speed of adoption for quantitative financial
models to help value options and assess risk
exposures.

The influence of option-pricing theory on
finance practice has not been limited to
financial options traded in markets or even to
derivative securities generally. As we shall see,
the
originally used to derive the option-pricing

underlying conceptual framework

formula can be used to price and evaluate the
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risk in a wide array of applications, both
financial and non-financial. Options-pricing
technology has played a fundamental role in
supporting the creation if new financial
products and markets around the globe. In the
present and the impending future, that role
will continue expanding to support the design
of entirely new financial institutions, decision-
making by senior management, and the
formulation of public policy on the financial
system. To underscore that point, I begin with
a few remark about financial innovation of the
past, this adumbration to be followed in later
sections with a detailed listing of applications
of the options technology that include some
observations on the directions of future
changes in financial services.

New financial product and market designs,
improved computer and telecommunications
technology and advances in the theory of
finance during the past quarter-century have
to dramatic and rapid changes in the
structure of global financial markets and
institutions. The scientific breakthroughs in
financial modeling in this period both shaped
and were shaped by the extraordinary flow of
financial innovation which coincided with
those changes. Thus, the publication of the
option-pricing model in 1973 surely helped the
development and growth of the listed options
and over-the-counter (OTC) derivatives
markets. But, the extraordinary growth and
success of those markets just as surely
stimulated further development and research
focus on the derivative-security pricing
models. To see this in perspective, consider
some of the innovative changes in market
structure and scale of the global financial
system since 1973. There occurred the

aforementioned fall of Bretton Woods leading
to floating-exchange rates for currencies, the
development of the national mortgage market
in the United States which in turn
restructured that entire industry; passage
of the Employee Retirement Income Security
Act (ERISA) in 1974 with the subsequent
development of the U.S. pension-fund
industry; the first money-market fund with
check writing that also took place in 1974; and
the explosive growth in mutual fund assets
from $48 billion 25 years ago to $4.3 trillion
today (a ninety-fold increase), with one
Institution, Fidelity Investments, accounting
for some $500 billion by itself. In this same
period, average daily trading volume on the
New York Stock Exchange grew from 12
million shares to more 1 than 300, million.
Even more dramatic were the changes in
Europe and in Asia. The cumulative impact has
significantly affected all of wus-as users,
producers, or overseers of the financial

system.

Nowhere has this been more the case than in
the development, refinement and broad-based
implementation of contracting technology.
Derivative securities such as futures, options,
swaps and other contractual agreements, the
underlying substantive instruments for which
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our model was developed, provide a prime
example. Innovations in financial-contracting
technology have improved efficiency by
expanding opportunities for risk sharing,
lowering transactions costs and reducing
information and agency costs. The numbers
reported for the global use of derivative
securities are staggering(the figure of $70
trillion appeared more than once in the news
stories surrounding the award of the Prize
and there are a number of world banking
institutions with reported multi-trillion dollar
off-balance-sheet derivative positions).
However, since these are notional amounts
(and often involve double-counting), they
are meaningless for assessing either the
importance or the risk-exposure to derivative
securities. Nevertheless, it is enough to say
here that properly measured, derivatives are
ubiquitous throughout the world financial
system and that they are used widely by non-
financial firms and sovereigns as well as
institutions in virtually every part of their
financing and risk-managingactivities. Some
observers see the extraordinary growth in the
use of derivatives as fad-like, but a more likely
explanation is the vast saving in transactions
The cost of
for

cost derived from their use.
implementing financial strategies
institutions using derivatives can be one-tenth
to one-twentieth of the cost of executing them
in the underlying cash-market securities. The
significance of reducing spread cost be quite
dramatic for corporations and for sovereigns:
for instance, not long ago, a 1 percent (i.e.,
100 basis point) reduction in debt-spread cost
in the Italian government debt would have
reduced the deficit by an amount equal to
1.25 percent of the Gross Domestic Product

of Italy.

Further improved technology, together with
growing breadth and experience in the
applications of derivatives, should continue to
reduce transactions costs as both users and
producers of derivatives move down the
learning curve. Like retail depositors with
automatic teller machines in banks, initial
by
contractual agreements can be high, but

resistance institutional clients to

once customers use them they tend not
to return to the tradicional alternatives for

implementing financial strategies.

A central process in the past two decades has
been the remarkable rate of globalization of
the financial system. Even today, inspection of
the diverse financial systems of individual
nation-states would lead one to question how
effective integration across geopolitical borders
could have realistically taken place since those
systems are rarely compatible in institutional
forms, regulations, laws, tax structures and
business practices. Still, significant integration
did take place. This was made possible in large
part by derivative securities functioning as
«adapters». In general, the flexibility created
by the widespread use of contractual
agreements, other derivatives, and specialized
institutional designs provides an offset to
dysfunctional institutional rigidities. More
specifically, derivative-security contracting

technologies provide efficient means for




Applications of Option-Pricing Theory: Twenty-Five Years Later

creating cross-border interfaces among
otherwise incompatible domestic systems,
without requiring widespread or radical
changes within each system. For that
reason, implementation of derivate-security
technology and markets within smaller and
emerging-market countries may help form
important gateways of access to world
capital markets and global risk-sharing. Such
development and changes are not limited
only to the emerging-market countries with
their new financial systems. Derivatives and
other contracting technologies are likely to
play a
engineering of the major transitions required

significant role in the financial
for European Monetary Union and for the
major restructuring of
financial institutions in
Japan.

With this introduction
as background, I turn
now to the key con-

framework

ceptual and mathematical
underlying the option-pricing model and its

subsequent applications.

GENERAL DERIVATION OF
DERIVATIVE-SECURITY PRICING

I understand that it is customary in these
lectures for the Laureates to review the
background and the process leading up to
their discoveries. Happily, there is no need to
do so here since that has been done elsewhere
in Black (1989), Bernstein (1992, Ch. 11), and
Merton and Scholes(1995). Instead, I briefly
summarize. My principal contribution to the
Black-Scholes option-pricing theory was to
show that the dynamic trading strategy
prescribes by Black and Scholes to offset the

risk exposure of an option would provide a
perfect hedge in the limit of continuous
trading. That
continuously without cost, then following

is, if one could trade
their dynamic trading strategy using the
underlying traded asset and the riskless asset
would exactly replicate the payoffs on the
option. Thus, in a continuous-trading financial
environment, the option price must satisfy the
Black-Scholes formula or else there would be
an opportunity for arbitrage profits. To
demonstrate this limit-case result, 1 applied
the tools developed in my earlier work (1969;
1971) on the continuous-time theory of
portfolio selection. My 1973 paper also
extended the appllcablhty of the Black-
Scholes model to allow
for stochastic interest
rates on the riskless
asset, dividend payments
on the underlying asset,
a changing exercise
price, American-type
early-exercise of the option, and other

«exoticy features such as the «down-and-

out» provision on the option. I am also
responsible for naming the model, "The Black-

Scholes Option-Pricing Model".

The derivations of the pricing formula in
both of our 1973 papers make the following
assumptions:

I. "Frictionless", and "continuous" markets:
there are no transactions cost or differential
taxes. Markets are open all the time and

takes

‘Borrowing and short-selling are allowed

trading place continuously.
without restriction. The borrowing and

lending rates are equal.




Revista Universidad Eafit. Enero - Febrero - Marzo 1998

II. Underlying asset-price dynamics: let V =
V(t) denote the price at time t of a
limited-liability asset, such as a share of
stock. The posited dynamics for the

described

by an Ito-type stochastic differential

instantaneous return can be

equation with continuous sample paths
given by

dV = [oV - D, (V,t)] dt + oVdZ

where: o = instantaneous expected rate of
return on the security; o® = instantaneous
variance rate, which is assumed to depend,
at most, on V(t) and t (i.e.,, 0> = o*(V, t)); dZ is
a Wiener process; and D, = dividend payment
flow rate. With limited liability, to avoid
arbitrage, V(t) = O for all t 2 t* if V(t¥) = 0.
Hence D, must satisfy D (O, t) = 0. Other
than a technical requirement of bounded
variation, a can follow a quite general
stochastic process, dependent on V, other
security prices or state variables. In particular,
the assumed dynamics permit a mean-
reverting process for the asset’s returns.

III. Default-free bond-price dynamics: bond
returns are assumed to be described by It
stochastic processes with continuous
sample paths. In the original Black and
Scholes formulation and for exposition
convenience here, it is assumed that

the riskless instantaneous interest rate,

r(t) = r, is a constant over time.

IV. Investor preferences and expectations:

investor preferences' are assumed to
prefer more to less. All investors are
assumed to agree on the function ¢ and

on the Itd process characterization for

the retum dynamics. It is not assumed
that they agree on the expected rate
of return, a.

V. Functional dependence of the option-pricing
formula: the option price is assumed
to be a twice-continuously differentiable
function of the asset price, V, default-free
bond prices, and time.

In the particular case of a non-dividend-
paying asset (D,= O) and a constant variance
rate, 0°, these assumptions lead to the Black-
Scholes
European-type call option with exercise price

option-pricing formula for an
L and expiration date T, written as
(1) C(Vt)= VN(d)-L exp(-r[T-t])N(d-o NT-t)

where d = (In[V/L] + [r + 6*/2][T-t]) / 6NT -t
and N ( ) is the cumulative density function for
the standard normal distribution.

Subsequent research in the field proceeded
along three dimensions: applications of the
technology to other than financial options
(which is discussed in the next section);
empirical testing of the pricing formula,
which began with a study using over-the-
counter data from a dealer’s book obtained
by Black and Scholes (1972); attempts to
in the
derivation, and thereby to strengthen the

weaken the assumptions used
foundation of the applications developed from
this research. The balance of this section
addresses issues of the latter dimension.
Early concerns raised came from Long (1974)
and Smith (1976) who questioned Assumption
V: namely, how does one know that the option

e[
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prices do not depend on other variables than
the ones assumed (for instance, the price of
beer), and why should the pricing function be
twice-continuously differentiable? These
concerns were resolved in an altemative
derivation in Merton (1977b) which shows
that Assumption V. is a derived consequence,
not an assumption, of the analysis.

A broader, and still open, research issue is the
robustness of the pricing formula in the
absence of a dynamic portfolio strategy that
exactly replicates the payoffs to the option
security. Obviously, the conclusion on that
issue depends on why perfect replication
is not feasible as well as on the magnitude
of the imperfection. Continuous tradin g is,
of course, only an idealized prospect, not
literally obtainable, and therefore, with
discrete trading intervals, replication is at
best only approximate. Subsequent simulation
work has shown that within the actual
trading intervals available and the volatility
levels of speculative prices, the error in
replication is manageable, provided, however,
that the other assumptions about the
underlying process obtain. Cox and Ross
(1976) and Merton (1976 a, b) relax the
continuous sample-path assumption and
analyze option pricing using a mixture of
jump and diffusion processes to capture the
prospect of non-local movements in the
underlying assets return process. Without a
continuous sample path, replication is not
possible which rules out a strict no-arbitrage
derivation. Instead, the derivation of the
option-pricing model is completed by using
equilibrium asset pricing models such as the
Intertemporal CAPM [Merton (1973b)] and the
Arbitrage Pricing Theory [Ross (1976a)]. This

approach relates back to the original way in
which Black and Scholes derived their model
using the Classic Sharpe-Lintner CAPM. There
has developed a considerable literature on the
case of imperfect replication (Cf. Bertsimas,
Kogan, and Lo (1997), Breeden (1984), Davis
(1997), Flillmer and Sonderman (1986), and
Romano and Touzi (1997).

On this occasion, I re-examine the imperfect-
replication problem for a derivative security
linked to an underlying asset that is not
continuously available for trading in an
environment in which some assets are
tradable at any time. As is discussed in the
section to follow, non-tradability is the
circunstance for several important classes of
applications that have evolved over the last
quarter century, which include among others,
the pricing of financial guarantees such as
deposit and pension insurance and the
valuation of nonfinancial or "real" options.
Since the Black-Scholes model was derived by
assuming that the underlying asset is
continuously traded, questions have been
raised about whether the pricing formula can
be properly applied in those applications. The
derivation follows along the lines presented
in Merton (1977b, 1997b) for the perfect-

replication case.

A derivative security has contractually
determined pay outs that can be described by
functions of observable asset prices and time.
These pay out functions define the derivative.

We express the terms as follows:

Let W(t) = price of a derivative security at

time ¢
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If V()2 V(t) for 0<t<T, then W(t)=f [V(1), t]
(2) If V()< W(t) for O<t<T, then W(t)=g[V(t), t]

If t=T then W(T) = h [V(T)]

For O < t > T, the derivative security receives
a payment flow-rate specified by D,(V, t). The
terms as described In (2) are to be interpreted
as follows: the first time that V(t) > V(t) or
v(t) < V), the owner of the derivative must
exchange it for cash according to the schedule
in (2). If no such events occur for t < T then
the security is redeemed at t = T for cash
according to (2). T is called the maturity date
(or expiration date, or redemption date) of the
derivative. The derivative security is thus
defined by specifying the contingent payoff
functions f, g, h, D,, and T. In some cases, the
schedules or the boundaries V(t) and V(t) are
contractually specified; in others, they are
determined endogenously as part of the
valuation process, as in the case of the early-
exercise boundary for an American-type
option.

By arbitrage restrictions, the derivative secu-
rity will have limited liability if and only
if g>20,h>0,f>0,and D,0, t) = 0.

If (as drawn in Figure 1) the boundaries V(t),
and 17( t) are continuous functions, then
because V(t) has a continuous sample path in
t by (1), we have that (i) if V(t) < ¥(t) for some
t, then thereis at, t < t, so that V(t) = V(t).
and (ii) if V(t) >V (t) for some t, then there is a
t, t<t, so that V(t) = V(t). Hence, in this
case, the inequalities for V can be neglected
in (2) and the only relevant region for analysis
is V() <V(t) <Vt 0<t<T

FIGURE 1
Relevant Region of V:
V) Vi) <V (1), 0<t<T

vit)

With the derivative-security characteristics
fully the
fundamental for

specified, we turn now to

production technology
hedging the risk of issuing a derivative
security and for evaluating the cost of its
production. To locate the derivation in a more
substantive framework, I posit a hypothetical
financial intermediary that creates derivative
securities in principal transactions for its
customers by selling them contracts which
are its obligation. It uses the capital markets
or transactions with other institutions to
hedge the contractual liabilities so created
by dynamically trading in the underlying
securities following a strategy designed to
reproduce the cash flows of the issued
contracts as accurately as it can. If the
intermediary cannot perfectly replicate the
pavoffs to the issued derivative, it either
obtains adequate equity to bear the residual
risks of its imperfectly hedged positions or
it securitizes those positions by bundling
them into a portfolio for a special-purpose
financial vehicle which it then sells either in
the capital market or to a consortium of
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other institutions in a process similar to the
tradicional reinsurance market. Although
surely a caricature, the following description
is not far removed from real-world practice.

The objective is to find a feasible, continuous-
trading portfolio strategy, constructed from
all available traded assets included the riskless
asset that comes "closest" to satisfying the
following four properties: if P(t) denotes the
value of the portfolio at time t, then for
o<t<T

(i) att,if V(t) = V(t), then P(t) = glV(t), t]
(i) att, if V(t) = V (t), then P(t) = fIV (), t]

(iii) for each t, the pay out rate on the portfolio
is Dy(V, t)dt

(iv) at t = T, (T) h[V(T)].

We call this portfolio the "hedging portfolio"
for the derivative security defined by (2). We
label that portfolio as "portfolio (*)." In the
special, but important, case in which the
portfolio meets the above conditions exactly,
the hedging portfolio is called the "replicating

portfolio” for the derivative security.

Bertsimas, Kogan, and Lo (1997) study the
complimentary problem of "closeness" of
dynamic replication where they assume that
one can trade in the underlying asset but
that trading is not continuous. They apply
stochastic dynamic programming to derive
optimal strategies to minimize mean-squared
tracking error. These strategies are then
employed in simulations to estimate
quantitatively how close one can get
to dynamic completeness.

We determine the optimal hedging portfolio in
two steps: first, find the portfolio strategy
constructed from all continuously traded
assets that has the smallest «tracking error»
in replicating the returns on the underlying
asset. For the underlying asset with price V,
we call this portfolio, the «V-Fund.» In the
second step, derive the hedging portfolio for
the derivative security as a dynamic portfolio
strategy mixing the V-Fund with the riskless
asset.

Let S(t) denote the price of continuously
traded asset i at time t. There are n such risky
assets plus the riskless asset which are traded
continuously. The dynamics for S; are
assumed to follow a continuous-sample-path

Itd process given by
(3) dS;= oSdt+ oisidZ;, i=1,.... n

where o;, is the instantaneous expected rate
of return on asset i; dZ; is a Wiener process;
oy is the instantaneous covariance between
the returns on i and j [that is, (dSi/S)(dS;/S;)
= oy dt); let n; be defined as the instantaneous
correlation between dZ; and dZ in Assumption
I such that dZ; dZ = n; dt. Let S(t) denote the
value of the V-Fund portfolio and let wy(t)
denote the fraction of that portfolio allocated
to asset i, i=1, ..., n, at time t. The balance of
the portfolio’s assets are invested in the
riskless asset. The dynamics for S can be

written as

(4) dS = [uS- D1 (Vt)] dt + & dgq

where

-
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M=

p=r+

-
H

1 i=] j=1

To create the V-Fund, the w; are chosen
so as to minimize the unanticipated part
of the difference between the return on the
underlying asset and the traded portfolio’s
return. That is, at each point in time, the
portfolio allocation is chosen so as to
minimize the instantaneous variance of [dS/
S - dv/v]. As shown in Merton (1992,
Theorem 15.3, p.501), the portfolio rule that
does this is given by

n
(5) wi(t)=0 % Vi Ok Nk, 1=1,...n.
k=1

where vi; is the kth ith element of the inverse
of the variance-covariance matrix of the
retums on the n risky continuously traded
assets. From Merton (1992, p.502), the
instantaneous correlation between the returns
on the V-Fund and the underlying asset, p dt
= dZ dg, can be written as

n n 1/2
(6) P=[Z )y vkiokcinkni]
k=1i=1

and

(7) 6= po.

The dynamics of the tracking error can thus
be written as

(8) dS/S-dV/V = (u- o) dt + 6db

where &= (1 - p*) ¢ and the Wiener process
db = (pdq - dz)/ V1 - p?). As shown in Merton
(1992, eq. 15.51), it follows that

(9) dS/Sidb=0, i=1,...n

n n
wi(t)[ai—r],52=§, 2 Wl(t)W](t)O'y, and dq [2 wi(t)O',-dZi]/&

i=1

That is, the tracking error in (8) is
uncorrelated with the returns on all traded
assets, which is a consequence of picking
the portfolio strategy that minimizes that
error.

With this, we now proceed with a "cookbook-
like" derivation of the production process for
our hypothetical financial intermediary to
best hedge the cash flows of the derivative
securities it issues. The derivation begins with
a description of the activities for the inter-
mediary s quantitative-analysis ("quant")
department which is responsible for gathering
the variance-covariance information necessary
to use (5) to construct and maintain the
V-Fund portfolio. It is also assigned the
responsibility to solve the following linear
parabolic partial differential equation for
F[V, t]

(10) 0 = Yho* (V;t)VPF,[V,t]+[rV - D, (V;1)]
F\[Vit) - rF[Vit] + F,[Vit] + D,(Vit)

subject to the boundary conditions: for
Vi) <V< VHandt<T

(11) F[V(t), t] = f[V(t), t] > O
(12) FIV(t), t] = glV(t), t] > 0
(13) F[V, T] = h[V] > 0

where F,, = &'F/dV°, F; = 3F/aV; and F, = oF/ot.
Note that the non-negativity conditions in
(11-13) together with D,(0, t) = 0 implies that
the derivative security has limited liability.

As a mathematical question, this is a "well-
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posed" problem, and a solution to (10-13)
exists and is unique.

Having solved for the function F[V, t], the
quant department has the prescribed

ongoing tasks at each timet (0 < t < T) to:

(i) ask the trading desk for the prices of all
traded assets necessary to determine the
price S(t) of the V-Fund and the best
estimate of the current price of the
underlying asset, V(t);

(i) from the solution to (10-13) compute
M(t) =F, [V(t), t] V(t);

(iii) tell the trading desk that the strategy
of portfolio (*) requires that $M(t) be
invested in the V-Fund for the period
ttot + dt;

(iv) compute Y(t) = F [V(t), t] and store Y(t) in
the intermediary’s data files for (later)
analysis of the time series (i.e., stochastic
process) Y(t).

The prescription for the execution or trading-

desk activities of the intermediary is as
follows: At time t = 0, give the trading desk
$P(0) as an initial funding (investment) for

(14) dP=M(t)%+M(t)

where

M(t )EISE = price appreciation

LAY

Dy(V,t)
S

portfolio (*) which contains the V-Fund asset
and the riskless asset. Let P(t) denote the value
of portfolio (*) at, t, after having made any
prescribed cash distribution (payment) from
the portfolio. The trading desk has the job at
each time t (0 <t < T) to:

(a) determine the current prices of the
underlying asset, V(t) and all individual
traded assets held in the V-Fund, and send
that price information to the quant
department;

(b) by selling securities in the portfolio (if
necessary), pay a cash distribution of
$D,[V(t), t]dt to the customer holding the
derivative security;

(c) compute the value of the balance of the
portfolio, P(t);

(d) receive instructions on M(t) from the quant
department;

(e) readjust the portfolio allocation so that
$M(t) is now invested in the V-Fund and
$[P(t) - M(t)] is invested in the riskless
asset.

It follows that the dynamics for the value of
portfolio (*) are given by

dt+[P- M(t)|rdt - D,(V, t)dt

t = divided payments received into the portfolio
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[P - M(t)]rdt = interest earned by the portfolio
D,Vit)dt = cash distribution to customer

Noting that M(t) = F,[V, t]V, we have by substitution from (4) into (14) that the dynamic of P
satisfy

dP = F,[V;t]lVdS/S + F,[V;tIVD,(V;t)/S + (P - F,[V;t]V)rdt - D(V)dt
(15)
= [F,V(i-r) + rP - D,]dt + F,Védg

Return now to the quant department to derive the dynamics for Y(t). From (iv), we have
that Y(t) = F[V, t] for V(t) = V. Because F is the solution to (10-13), F is a twice-continuously
differentiable function of V and t. Therefore, we can apply Itd’s Lemma, so that for V(t) = V|

dY = F,[Vit]dV + F,[Vitjdt + 1/2F, [Vt](dV)*
(16)
= [1/26°V?*F,;, + F,(adV - D,) + F,]dt + F,VodZ

because (dV)?= ¢*V?dt. Because F[V, t] satisfies (19) dQ =rQdt + F,V(dS/S - dV/V)
(10), we have that = (rQ + F, Vi - o)dt + F, V 9 db.
(17) 1/20*V?F,, - D,F, + F, = rF - rVF, - D, o , ,

At this point, we digress to examine the

Substituting (17) into (16), we can rewrite special case in which perfect replication of the

(16) as return on the underlying asset obtains (i.e.,

p=1 and there is no tracking error). In that
(18) dY=[F (0 - NV + 1F - D,Jdt + F,VodZ case, equation (19) reduces to an ordinary
differential equation (Q /Q = r) with solution
Note that the calculation of Y(t) and its
dynamics by the quant department in no way (20) Q) = Q(O)exp(rt)
requires knowledge of the time-series of
values for portfolio (*), {P(t)}, that are where Q) = P(0) - Y(0) = P(0) - F[V(O), 0].
calculated by the trading desk. Putting these Therefore, if the initial funding provided to the
two time series together, we define Q(t) = P(t) trading desk for portfolio (*) is chosen so that
- Y(t). 1t follows that dQ = dP - dY. P(0) = F[V(0), 0], then from (20), Q) =0
Substituting for dP from (15) and for dY for all t and
from (18), rearranging terms using (8), we
have that (21) P(t) = F[V(D), t]
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By comparison of (11- 13) with (2), we have
from (21) that the (*)-portfolio strategy
generates the identical payment flows and
terminal (and boundary) values as the
derivative security described at the outset of
this analysis. That is for a one-time, initial
investment of $F[V(0),0], we have found a
feasible portfolio strategy that exactly
replicates the payoffs to the derivative
security. Thus, $F[V(0),0] is the cost to the
intermediary for producing the derivative. If
the derivative security is traded, then to avoid
("conditional") arbitrage (conditional on g, r,
D,), its price must satisfy

(22) W(t) = P(t) = F[V(t),t].

Since the absence of arbitrage opportunities is
a necessary condition for equilibrium, it follows
that equilibrium prices for derivative securities
on continuously tradable underlying assets
must satisfy (22). This is, of course, the
original Black-Scholes result and the V-Fund
degenerates into a single asset, the underlying
asset itself. However, note that (22) obtains
without assuming that the derivative-pricing
function is a twice-continuously differentiable

function of V and t.

Note further that the development of the (*)
portfolio strategy did not require that the
derivative security (defined by (2)) actually
trades in the capital market. The (*) portfolio
strategy provides the technology for
"manufacturing” or synthetically creating the
cash flows and payoffs of the derivative
security if it does not exist. That is, if one
describes a state-contingent schedule of
outcomes for a portfolio (i.e. specifies f, g, h,

D, T, V(t),V(t)), then the (*) portfolio strategy

provides the trading rules to create this
pattern of pay outs and it specifies the cost of
implementing those rules. The cost of creating
the security at time t is thus F[V(t)t].
Moreover, if the financial-services industry is
competitive, then price equals marginal
cost, and (22) obtains as the equilibrium
price for derivatives sold directly by

intermediaries.

Returning from this digression to the case
of imperfect replication, we have, by construc-
tion of the process for Y, that Q = P - Y is the
cumulative arithmetic tracking error for the
hedging portfolio. By inspection of (19), the
instantaneous tracking error for the derivative
security is perfectly correlated with the
tracking error of the V-Fund. Hence, from (9),
it follows that the tracking error for the
hedging portfolio is uncorrelated with the
returns on all continuously traded assets.
Using this lack of correlation with any other
traded asset, I now argue in this case that the
replication-based valuation can be used for
pricing the derivative security even though
replication is not feasible.

As we know, in all equilibrium, asset-pricing
models, assets that have only nonsystematic
or diversifiable risk are priced to yield an
expected return equal to the riskless rate of
interest. The condition satisfied by the
tracking-error component of the hedging
portfolio satisfies a even stronger no-
correlation condition than either a zero-beta
asset in the CAPM, a zero multi-beta asset of
the Intertemporal CAPM, or a zero factor-risk
asset of the Arbitrage Pricing Theory. Thus,
by any of those theories, the equilibrium

condition from either (8) or (19) is that
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(23) p=a.
If (23) obtains, it follows immediately that
the equilibrium price for the derivative
security is F[V(t), t], the same formula "as if"
the underlying asset is traded continuously.
And as a consequence, the Black-Scholes
formula would apply even in those appli-
cations in which the underlying asset is not
traded.

As is well known from the literature on
incomplete markets, (23) need not obtain if the
creation of the new derivative security helps
complete the market for a large enough subset
of investors that the incremental dimension of
risk spanned by this new instrument is
"priced" as a systematic risk factor with an
expected return different from the riskless
Markets
incomplete with respect to a particular risk

interest rate. tend to remain
either because the cost of creating the
securities necessary to span that risk exceeds
the benefits, or because non-verifiability, moral
hazard, or adverse-selection problems render
the viability of such securities untenable.
Generally, major macro risks for which
significant pools of investors want to manage
their exposures are not controllable by any
group of investors, and it is unlikely that any
group would have systematic access to
materially better information about those
risks. Hence, the wusual asymmetric-infor-
mation and incentive reasons given for market
failure do not seem to be present. In systems
with well-developed financial institutions and
markets and with today financial technology,
it is thus not readily apparent what factors
make the cost of developing standardized
(e.g., futures,

derivative markets swaps,

options) prohibitive if, in large scale, there is
a significant premium latently waiting to be
paid by investors who currently participate
in the markets. On a more prosaic
empirical note, in most applications of the
option-pricing model, the "residual" or
tracking-error variations are likely to be
specific to the underlying project, firm,
institucién, or person, and thereby they are
unlikely candidates for macro risk surrogates.
These observations support the prospects for

(23) to obtain.

The risk need not however be macro in scope
in order to be significant to one investor or a
small group of investors. Obvious examples of
such risks would be various firm-or person -
specific components of human capital,
including death and disability risks. To make
a case for instruments with these types of
exposures to be priced with a risk premium,
Incomplete-market models often focus on the
"incipient-demand" (or "maximum reserva-
tion") price or risk premium that an investor
would pay to eliminate a risk that is not
covered in the market by the existing set of
securities. In the abstract, that price, of course,
can be quite substancial. However, arguments
along these lines to explain financial-product
pricing implicitly assume a rather modest
and static financial-services sector. A classic
example is life insurance. Risk-averse indi-
viduals with families may, if necessary, be
willing to pay a considerable premium for life
insurance, in excess of the actuarial mortality
risk, even after taking into account moral-
hazard and person-specific informational
asymmetries. Moreover, if the analysis further
postulates a financial sector so crude that
bilateral

contracts between risk-averse
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individuals are the only way to obtain such
insurance, then the equilibrium price for such
insurance in that model can be so large that
little, if any, of such contracts are created. But,
such models are a poor descriptor of the real
world. If the institutions and markets were
really that limited, the incentives for change
and innovation would be enormous. Modern
finance technology and experience in
implementing it provide the means for such
change. And if, instead, one admits into the
model just the classic mechanism for
organizing an "Insurance” institution (whether
government-run or private-sector) to take
advantage of the enormous diversification
benefits of pooling such risks and subdividing
them among large numbers of participants,
then the equilibrium price equals the «supply»
price of such insurance contracts which
approaches the actuarial rate.

As is typical in analyses of other industries, the
equilibrium prices of financial products and
services are more closely linked to the costs of
the efficient producers than the inefficient ones
(except perhaps as a very crude upper bound
to those prices). Furthermore, the institutional
structure of the financial system is neither
éxogenous nor fixed. In theory and in practice,
that
changing technology and profit-opportunities

structure changes in response to
for creating new products and existing
products more efficiently. As discussed at
length elsewhere (Merton 1992, pp. 457-467,
535-536), a financial sector with a rich and
well-developed structure of institutions can
justify a "quasi-dichotomy" modeling
approach to the pricing of real and financial
assets that employs «reduced-form» models

with a simple financial sector in which all

agents are assumed to be minimum-cost
information processors and transactors.
However, distortions of insights into the real
world can occur if significant costs for the
agents are introduced into the model while the
simple financial sector is retained as an
unchanged assumption. Put simply, high
transaction and information costs for most of
the economys agents to directly create their
own financial products and services does not
imply that equilibrium asset prices are
influenced by those high costs, as long as there
1s an efficient financial-service industry with
low-cost, reasonably competitive producers.

In considering the preceding technical analysis,
one might wonder if there are relevant
situations in which the price is observable
but trade in the asset cannot take place one
common class of real-world instances is
characterized as follows: consider an insu-
rance company that has guaranteed the
financial performance of the liabilities of a
privately-held opaque institution with a
mark to market portfolio of assets. The
market value of that portfolio (corresponding
to V In our analysis) is provided to the
guarantor on a continuous basis, but the
portfolio itself cannot be traded by the
guarantor to hedge its exposure because it
does not know the assets held within the
portfolio. Elsewhere (Merton, 1997a), 1 have
developed a model using an alternative
approach of incentive contracting combined
with the derivative-security technology to
analyze the problem of contract guarantees
for an opaque institution. 1t is nevertheless
the case that discontinuous tradability of an
asset is often accompanied by discontinuous
observations of its price. And so, the
combination of the two warrants attention.




Revista Universidad Eafit. Enero - Febrero - Marzo 1998

Hence, I complete this section with conside-
ration of how to modify the valuation formula
if the price of the underlying asset V is not
continuously observable.

Suppose that in the example of this section,
the price of the underlying asset is observed
at t=0 and then again at the maturity of
t=T. In between,
there is neither direct observation nor

the derivative contract,

inferential information from pay outs on
the asset. Hence, D,(V;t) = 0, and the derivative
security has no pay outs or interim "stopping
points" prior to maturity [as specified in (11)
and (12)] contingent on V(t). It is however
known that the dynamics of V are as described
in Assumption II with a covariance structure
with available traded assets sufficiently well
specified to construct the V-Fund according to
(5). Define the random variable X(t) = V(t)/5(t),
the cumulative proportional tracking error,
with X(0) = 1. By applying Itd’s Lemma, we
have from (8), (9), and (23) that the dynamics
for X can be written as

(24) dX= 6Xdb.

It follows from (24) that the distribution for
X(t), conditional on X(0) = 1, is lognormal
with the expected value of X(t) equal to 1 and
the variance of In[X(t)] equal to 6t. The partial
differential equation for F, corresponding to
(10), that determines the hedging strategy
uses as its independent variable the best
estimate of V(t), which is S(t), and it is
written as

(25) 0=1/2§8S?F,,[S,t]+rSF,[St]-rF[S,t]+F,[St],

subject to the terminal-time boundary
condition that for S(T-)=S,

(26) F[S, T] = E { h(SX) }

where h is as defined in (13), X is a
lognormally distributed random variable with
E{ X }=1 and variance of In [X] equal to &°T
and E { } is the expectation operator over
the distribution of X.

Condition (26) reflects the fact that for all
t < T, the best estimate of V(t) is S(t). However,
at t=T, V(T) is revealed and the value of S
"jumps" by the total cumulative tracking
error of X(T) from its value S at t =T to
5(T) = V(T). The effect of the underlying asset
price not being observable is perhaps well-
illustrated by comparing the solution for the
European-type call option with the classic
Black-Scholes solution given here in (1). The
solution to (25) and (26) with h(V) = max [O,
V-Llisgivenby, forO <t < T

(27) F[S,t]) = S N(u) - L exp (-r[T- t]) N(u —\/7—0

where u=(In[S/L]+r[T-t]+ R2)/Vy, y= &(T-t) +
6°T and N( ) is the cumulative density function
Jor the standard normal distribution.

By inspection of (1) and (27), the key difference
in the option pricing formula with and
without continuous observation of the
underlying asset price is that the variance over
the remaining life of the option does not go to
zero as t approaches T, because of the «jump»
event at the expiration date corresponding
to the cumulative effect of tracking error.

This section has explored conditions under
which the Black-Scholes option pricing model
can be validly applied to the pricing of assets
with derivative-security-like structures, even
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when the underlying asset-equivalent is
neither continuously traded nor continuously
observable. A fuller analysis of this question
would certainly take account of the additional
tracking error that obtains as a consequence
of imperfect dynamic trading of the V-Fund
portfolio, along the lines of Bertsimas, Kogan,
and Lo (1997). However, a more accurate
assessment of the real-world impact should
also take into account other risk-management
tools that intermediaries have to reduce
tracking error. For instance, as developed in
analytical detail in Merton (1992, pp. 450-
457), intermediaries need only use dynamic
trading to hedge their net derivative-security
exposures to various underlying assets. For a
real-world intermediary with a large book of
various derivative products, netting, which in
effect extends the capability for hedging to
include trading in securities with "non-linear”
pay-off structures, can vastly reduce the size
and even the frequency of the hedging
transactions necessary to achieve an
acceptable level of tracking error. Beyond this,
as part of -their, optimal risk management,
intermediaries can "shade" their bid and offer
prices among their various products to induce
more or less customer activity to help manage
their exposures. The limiting case when the
net of customer exposures leaves the
intermediary with no exposure is called a
"matched book".

APPLICATIONS OF THE OPTION-
PRICING TECHNOLOGY

Open the financial section of a major
newspaper almost anywhere in the world and
you will find pages devoted to reporting the
prices of exchange-traded derivative securities,

both futures and options. Along with the vast
over-the-counter derivatives market, these
exchange markets trade options and futures
on individual stocks, stock index and mutual-
fund portfolios, on bonds and other fixed-
income securities of every maturity, on
currencies, and on commodities including
agricultural products, metals, crude oil and
refined products, natural gas, and even,
electricity. The volume of transactions in these
markets is often multiple times larger than
the volume in the underlying cash-market
assets. Options have, traditionally been used
in the purchase of real estate and the
acquisition of publishing and movie rights.
Employee stock options have long been
granted to key employees and today represent
a significantly growing proportion of total
compensation, especially for the more highly
paid workers in the United States. In all these
markets, the same option-pricing metho-
dology set forth in the preceding section is
widely used both to price and to measure the
risk exposure from these derivatives. However,
financial options represent only one of several
categories of applications for the option-
pricing technology.

In the late 1960s and early 1970s when the
basic research leading to the Black Scholes
model was underway, options were seen as
rather arcane and specialized financial
instruments. However, both Black and Scholes
(1972. 1973) and I (Merton [1970, 1974])
recognized early on in the research effort that
the same approach used to price options could
be applied to a variety of other valuation
problems. Perhaps the first major development
of this sort was the pricing of corporate
liabilities, the "right-hand side" of the firm’s
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balance sheet. This approach to valuation
treated the wide array of instruments used to
finance firms such as debentures, convertible
bonds, warrants, preferred stock, and
common stock (as well as a variety of hybrid
securities) as derivative securities with their
contractual pay-outs ultimately dependent on
the value of the overall firm. In contrast to the
standard fragmented valuation methods of the
time, it provided a unified theory for pricing
these liabilities. Because application of the
pricing methodology does not require a
history of trading in the particular instrument
to evaluate, it was well-suited for pricing new
types of financial securities issued by
corporations in an innovating enviromnent. As
discussed including several references in
Merton (1992, pp. 423-427), applications to
corporate finance along this line developed
rapidly.

"Option-like" structures were soon seen to be
lurking everywhere, and thus came an
explosion of research in applying option-
pricing which still continue. Indeed, full justice
could not be done to the list of contributions
accumulated over the past 25 years even if
this entire paper were devoted to that
endeavor. Fortunately, a major effort to do just
that is underway and the results will soon be
available (Jin, Kogan, Lim, Taylor, and Lo,
1997). The authors have generously shared
their findings with me. And so, I can convey
here some sense of the breadth of applications
and be necessarily incomplete without harm.

The put option is a basic option-which gives
its owner the right to sell the underlying asset
at a specified ("exercise") price on or before a
given ("expiration") date. When purchased in

conjunction with ownership of the underlying
asset, it is functionally equivalent to an
insurance policy: that protects its owner
against economic loss from a decline in the
asset’s value below the exercise price for any
reason, where the term of the insurance
policy corresponds to the expiration date.
Hence, option-pricing theory can be applied to
the value of insurance contracts. An early
insurance application of the Black Sholes
model was to the pricing of loan guarantees
and deposit insurance (cf., Merton, 1977a). -
A contract that insures against losses in value
caused by default on promised payments on
a contract in effect is equivalent to a put
option on the contract with an exercise price
equal to the value of the contract if it were
default-free. Loan and other contract
called
derivatives, are ubiquitous in the private

guarantees, collectively credit
sector. Indeed, whenever a debt instrument is
purchased in which there is any chance that
the promised payments will not be made, the
purchaser is not only lending money but
also in effect issuing a loan guarantee as a
form of self-insurance. Another private-
sector application of options analysis is in

the wvaluation of catastrophic-insurance

reinsurance contracts and bonds.

i



Applications of Option-Pricing Theory: Twenty-Five Years Later

Almost surely, the largest issuer of such
guarantees are governments. In the United
States, the Office of the Management of the
Budget is required by law to value those
guarantees. The option moldel has been
applied to assess deposit insurance, pension
insurance, guarantees of student loans and
home mortgages, and loans to small
businesses and some large ones as well. The
application to government activities goes
beyond just providing guarantees. The model
has been used to determine the cost of other
subsidies including farm-price supports and
through-put guarantees for pipelines. It has
been applied to value licenses issued with
limiting quotas such as for taxis or fisheries
or the right to pollute and to value the
govemment’s right to
change those quotas.
Government sanctions
patents. The decision
whether to spend the
resources to acquire a
patent depends on the value of the patent
which can be framed as an option-pricing
problem. Indeed, even on something that is not
currently commercial, one may acquire the
patent for its "option value", should economic
conditions change in an unexpected way.
Paddock, Siegel, and Smith (1988) show that
option value is fundamental to the valuation
of government-granted offshore drilling
rights, especially when current and expected
future economic conditions would not support
development of the fields. Option-pricing,
analysis quantifies the government’s economic
decision whether to build roads in less-
populated areas depending on whether it has
the policy option to abandon rural roads
if they are not used enough.

Various legal and tax issues involving policy
and behavior have been addressed using the
option model. Among them is the valuation of
plaintiff”s litigation options, bankruptcy laws
including limited-liability provisions, tax
delinquency on real estate and other property
as an option to abandon or recover the
property by paying the arrears, tax evasion,
and valuing the tax "timing" option for the
capital-gains tax in a circumstance when only
realization of losses and gains on investments
triggers a taxable event (Constantinides and
Ingersoll, 1984).

In a recent preliminary study, the options
structure has been employed to help model the
decision of whether the Social Security fund
should invest in equities
(Smetters 1997). As can
be seen in the option
formula of the preceding
section, the value of an
option depends on the
volatility of the underlying asset. The Federal
Reserve uses as one of its indicators of
investor uncertainty about the future course
of interest rates, the "implied" volatility derived
from option prices on government bonds. In
his last paper published after his death, Fischer
Black (1995) applies options theory to model
the process for the interest rates that govern
the dynamics of government bond prices. In
another area involving central-bank concerns,
Perold (1995) shows how the introduction of
various types of derivatives contracts has
helped reduce potential systemic-risk
problems in the payment system from
settlement exposures. The Black-Scholes
model can be used to value the "free credit
option" offered to participants in markets
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with other than instantaneous settlement
periods. The prospective application of
derivative-security technology to enhance
central-bank stabilization policies in both

interest rates and currencies is discussed in
Merton (1995, 1997b).

In an application involving government
activities far removed from sophisticated and
relatively efficient financial markets, options
analysis has been used to provide new insights
into optimal government planning policies in
developing countries. A view held by some in
development economics about the optimal
educational policy for less developed countries
is that once the assessed future needs for
labor-force composition are determined, the
optimal education policy should be to pursue
targeted training of the specific skills forecast
and in the quantities needed. The alternative
of providing either more general education
and training in multiple skills or training in
skills not expected to be used is seen as a
«luxury» that poorer, developing countries
could not afford. It, of course, was understood,
that forecasts of future labor-training needs
were not precise. Nevertheless, the basic
prescription formally treated them as if they
were. In S. J. Merton (1992), the question is
revisited, this time with an explicit recognition
of the uncertainty about future labor

requirements embedded in the model. The
analysis shows that the value of having the
option to change the skill mix and skill type
of the labor force over a relatively short period
of time can exceed the increased cost in terms
of longer education periods or less-deep
training in any one skill. The Black-Scholes
model is used to quantify that tradeoff. In a
different context of the private-sector in a
developed country, the same technique could
be used to assess the cost-benefit tradeoff for
a company to pay a higher wage for a labor
force with additional skills not expected to be
used in return for the flexibility to employ
those skills if the unexpected happens.

The discussion of labor education and training
decisions and litigation and taxes leads
naturally into the subject of human capital
and household decision-making. The individual
decision as to how much vocational education
to acquire can be formulated as an option-
valuation problem in which the optimal
exercise conditions reflect when to stop
training and start working. In the classic
labor-leisure tradeoff, one whose job provides
the flexibility to increase or decrease, the
number of hours worked, and hence his total
compensation, on relatively short notice, has
a valuable option relative to those whose
available work hours are fixed. Wage and
pension-plan "floors" that provide for a
minimum compensation, and even tenure for
university professors (McDonald 1974), have
an option-like structure. Other options
commonly a part of household finance are: the
commitment by an institution to provide a
mortgage to the house buyer, if he chooses to
get one; after he takes the mortgage, the
pre-payment right that gives the homeowner

-l
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the right to re-negotiate the interest rate paid
to the lender if rates fall; a car lease which
gives the customer the right, but not the
obligation, to purchase the car at a pre-
specified price at the end of the lease. Health-
care insurance contain varying degrees of
flexibility, a major one being whether the
consumer agrees in advance to use only a pre-
specified set of doctors and hospitals ("HMO
plan") or he retains the right to choose
an "out-of-plan" doctor or hospital ("point-of-
service" plan). In the consumer making the
decision on which to take and the health
insurer assessing the relative cost of providing
the two plans, each solves an option-pricing
problem as the value of that flexibility. Much
the same structure of valuation occurs in
choosing between "pay-per-view" and "flat-fee"
payment for cable-television services.

Many of the proceding option-pricing

applications do not involve financial
instruments. The family of such applications
is called "real" options. The most developed
area for real-option application is investment
decisions by firms (See Dixit and Pindyck, 1994

and Trigeorgis, 1996). The common element

for using option-pricing here is the same as

in the preceding examples: the future is
uncertain (if it were not, there would be no
need to create options because we know now
what we will do later) and in an uncertain
environment, having the flexibility to decide
what to do after some of that uncertainty is
resolved definitely has value. Option-pricing
theory provides the means for assessing that
value.

The major categories of options within project-
investment wvaluations are: the option to

initiate or expand, the option to abandon or
contract, and the option to wait, slow-down,
or speed-up development. There are "growth"
options which involve creating excess capacity
as an option and research and development as
creating the opportunity to produce new
products and even new businesses, but not the
obligation to do so if they are not economically

viable.

A few examples: For real-world application of
the options technology in valuing product
development in the pharmaceutical industry,
see Nichols (1994). In the generation of electric
power, the power plant can be constructed to
use a single fuel such as oil or natural gas or
it can be built to operate on either. The value
of that option is the ability to use the least-
cost, available fuel at each point in time and
the cost of that optionality is manifest in both
the higher cost of construction and less-
efficient energy conversion than with the
corresponding, specialized equipment. A third
example describes in Luehrman(1992) comes
from the entertainment industry and involves
the decision about making a sequel to a movie:
the choices are: either to produce both the
original movie and its sequel at the same time,
or wait and produce the sequel after the
success or failure of the original is known. One
does not have to be a movie-production expert
to guess that the incremental cost of
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producing the sequel is going to be less if the
first path is followed. While this is done, more
typically the latter is chosen, especially with
higher-budget films. The economic reason is
that the second approach provides the option
not to make the sequel (if, for example, the
original is not a success). If the producer knew
(almost certainly) that the sequel will be
produced, then the option value of waiting for
more information is small and the cost of doing
the sequel separately is likely to exceed the
benefit. Hence, once again, we see that the
amount of uncertainty is critical to the
decision, and the option-pricing model
provides the means for quantifying the cost/
benefit tradeoff. As a last example, Baldwin
and Clark (1997) develop a model for
designing complex production system focused
around the concept of modularity. They
exemplify their central theme with several
industrial examples which include computer
and automobile production. Modularity in
production provides options. In assessing
the value of modularity for production,
they employ an option-pricing type of
in the
to

methodology, where complexity

production system 1is comparable

uncertainty in the financial one.

In each of these real-option examples as with
a number of the other applications discussed
in this section, the underlying «asset» is rarely
traded
continuous market and its price is therefore

in anything approximating a

not continuously observable either. It is for
that reason in a paper manifestly focused on
applications, that I chose to devote so much
space to the technical section on extending the
Black-Scholes options pricing framework to
include non-tradability and non-observability.

FUTURE DIRECTIONS OF
APPLICATIONS

As I suggested at the outset, innovation is a
central force driving the financial system
toward greater economic efficiency with
considerable economic benefit having accrued
from the changes since the time that the
option-pricing papers were published Indeed,
much financial research and broad-based
practitioner experience developed over that
period have lead to vast improvements in our
understanding of how to apply the new
financial technologies to manage risk.
Moreover, we have seen how wide ranging are
the applications of our technology for pricing
and measuring the risk of derivatives.
Nevertheless, there still remains an intense
uneasiness among managers, regulators,
politicians, the press, and the public over these
new derivative-security activities and financial
institutions. And this seems to be the case even
though the huge financial disruptions, such as
the savings-and-loan debacle of the 1980s in
the United States and the current financial
crises in Asia and some emerging markets,
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appear to be the consequence of the more
tradicional risks taken by institutions such as
commercial, real-estate, and less-developed-
country lending, loan guarantees, and equity-
share holdings.

One conjecture attributes this uneasiness to
the frequently cited instances of individual
costly events, that are alleged to be associated
with derivatives, such as the failure of Barings
Bank, Procter and Gamble’s losses on complex
interest-rate contracts, the financial distress of
Orange County, and so forth. Perhaps. But, as
already noted, derivatives are ubiquitous in
the financial world and thus, they are likely to
be present in any financial circumstance,
whether or not their use |} ’
has anything causal to do
with the resulting financial
outcomes. However, even if
all these allegations were
valid, the sheer fact that
we are able to associate individual names
with these occurrences instead of mere
numbers ("XYZ company" instead of "475-500
thrifts" as the relevant descriptor) would
suggest that these are relatively isolated
events: unfortunate pathologies rather than
indicators of systemic flaws. In contrast, the
physiology of this financial technology, that is,
how it works when it works as it should, is
not the subject of daily reports from around
the globe but is essentially taken for granted.

An alternative or supplementary conjecture
about the sources of the collective anxiety over
derivatives holds that they are a part of a
wider implementation of financial innovations
which have required major changes in the
basic institutional hierarchy and in the

infrastructure to support it. As a result, the
knowledge base now required to manage and
oversee financial institutions differs greatly
from the tradicional training and experience of
many financial managers and government
regulators. Experiential changes of this sort
are threatening. 1t is difficult to deal with
change that is exogenous to our tradicional
knowledge base and framework and thus
comes to seem beyond our control. Decreased
understanding of the new environment can
create a sense of greater risk even when the
objective level of risk in the system remains
unchanged or is actually reduced. If so, we
should start to deal with the problem now
since the knowledge gap may widen if the
' current pace of financial
innovation, as some
anticipate, accelerates into
the 21% century. Moreover,
greater complexity of
products and the need for
more rapid decision-making will probably
increase the reliance on models, which in turn
implies a growing place for elements of
mathematical and computational maturity in
the knowledge base of managers. Dealing with
this knowledge gap offers considerable
challenge to private institutions and
government as well as considerable
opportunity to schools of management and
engineering and to university departments of
mathematics.

The successful private-sector and governmen-
tal financial-service providers and overseers
in the impending future will be those who
can address the dysfunctional aspects of
innovation in financial technology while still
fully exploiting their functional benefits. What

-
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types of research and training will be needed
to manage financial institutions? The view of
the future here as elsewhere in the economic
sphere is clouded with significant uncer-
tainties. With this in mind, I nevertheless try
my hand at a few thoughts on the direction
of change for product and service demands by
users of the financial system and implications
of those changes for applications of mathe-
matical financial modeling.

The household sector of users in the more fully

developed financial systems have experienced
a secular trend of disaggregation in financial
services. Some see this trend continuing with
existing products such as mutual funds being
transported into technologically less-developed
systems. Perhaps so, especially in the more
future, with the
growth of relatively inexpensive

immediate widespread
Internet
accessibility. However, deep and wide-ranging
disaggregation has left households with the
responsibility for making important and
technically complex micro financial decisions
involving risk (such as detailed asset allocation
and estimates of the optimal level of life-cycle
saving for retirement), decisions that they had
not had to make in the past, are not trained
to make in the present, and are unlikely

to execute efficiently even with attempts at

education in the future. The low cost
availability of the Internet does not solve the
"principal-agent" problem with respect to
financial advice dispensed by an agent. That is
why I believe that the trend will shift toward
more integrated financial products and
services, which are easier to understand and
more tailored toward individual profiles.
Those products and services will include not
only the tradicional attempt to achieve an
efficient risk-return tradeoff- for the tangible-
wealth. portfolio but also integrate human-
capital considerations, hedging, and income
and estate tax planning into the asset-
allocation decisions. Beyond the advisory role,
financial-service providers will undertake a
role of principal to create financial instru-
ments that eliminate "short-fall" or "basis" risk
for households with respect to targeted
financial goals such as tuition for children’s
higher education and desired consumption-
smoothing throughout the life-cycle (e.g.,
preserving the household’s standard of
living in retirement). The creation of such
customized financial instruments will be made
economically feasible by the derivative-
security pricing technology that permits the
construction of custom products at
"assembly-line"-levels of cost. Paradoxically,
making the products more user-friendly and
simpler to understand for customers will
create considerably more complexity for the
producers of those products. Hence, financial-
engineering creativity and the technological
and transactional bases to implement that
creativity, reliably and cost-effectively, are
likely to become a central competitive
element in the industry. The resulting
complexity will require more elaborate and

highly quantitative risk-management systems
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within financial-service firms and a parallel
need for more sophisticated approaches to
government oversight. Neither of these can be
achieved without greater reliance on
mathematical financial modeling, which in
turn will be feasible only with continued
improvements in the sophistication and
accuracy of financial models.

Non-financial firms currently use derivative
securities and other contractual agreements
to hedge interest rate, currency, commodity,
and even equity price risks. With improved
lower-cost technology and learning-curve
experience, this practice is likely to expand.
Eventually, this alternative to equity capital
as a cushion for risk could have a major
change on corporate structures as more
firms use hedging to substituting for equity
capital; thereby moving from publicly traded

shares to closely-held private shares.

In the preceding section, I discussed current
applications of the options technology to
corporate project evaluation: the evaluation
of research-and-development projects in
pharmaceuticals and the value of flexibility
decision about sequel production in the movie
industry. The big potential shift in the future,
however, is from tactical applications of
derivatives to strategic ones. For example, a
hypothetical oil company with crude oil
reserves and gasoline and heating oil
distribution but no refining could complete

the vertical integration of the firm by using
contractual agreements instead of physical
acquisition. Thus, by entering into contracts
that call for the delivery of crude oil by the
firm, on one date in return for receiving a mix
of refined petroleum products at a pre-
specified later date, the firm in effect creates
a synthetic refinery. Real-world strategic
examples in natural gas and electricity are
described in Harvard Business School case
studies, "Enron Gas Services" (1994) and
"Tennessee Valley Authority: Option Purchase
Agreements" (1996), by Peter Tufano. There is
some evidence that these new financial
technologies may even lead to a revisiting of
the industrial-organization model for these
industries.

It is no coincidence that the early applications
are in energy- and power-generation indus-
tries that need long-term planning horizons
and have major fixed-cost components on a
large scale with considerable uncertainty.
Since energy and power generation are
fundamental in every economy, this use for
derivatives offers mainline applications in both
developed and developing countries.
Eventually, such use of derivatives may
become standard tools for implementing

strategic objectives.

A major requirement for the efficient broad-
based application of these contracting
technologies in both the household and non-
financial-firm sectors will be to find effective
organizational structures for ensuring
contract performance, which includes global
clarification and revisions of the treatment of
such contractual agreements in bankruptcy.
The need for assurances on contract

—
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performance is likely to stimulate further
development of the financial-guarantee
business for financial institutions. Such
institutions will have to improve the efficiency
of collateral management further as
assurance for performance. As we have seen,
one early application of the options-pricing
model focuses, directly on the valuation and
risk-exposure measurement of financial

guarantees.

A consequence of all this prospective
technological change will be the need for
greater analytical understanding of valuation
and risk management by users, producers,
and regulators of derivate securities.
Furthermore, improvements in efficiency from
derivate products will not be effectively
realized without concurrent changes in the
financial "infrastructure" -the institucional
interfaces between intermediaries and financial
markets, regulatory practices, organization of
trading, clearing, settlement, other back-office
facilities, and management-information
systems. To perform its functions as both
user and overseer of the financial system,
government will need to innovate and make
use of derivate-security technology in the
provision of risk-accounting standards,
designing monetary and fiscal policies,
implementing stabilization programs, and
overseeing financial-system regulation.

In summary, in the distant past, applications
of mathematical models had only limited and
side-stream effects on finance practice. But in
the last quarter century since the publication
of the Black-Scholes option-pricing theory,
such models have become mainstream to
practitioners in financial institutions and

markets around the world. The option-pricing
model has played an active role in that
transformation. It is safe to say that, in the
future, mathematical models will surely play
an indispensable role in the functioning of the

global financial system.

Even this brief discourse on the application to
finance practice of mathematical models in
general and the options-pricing model in
particular would be negligently incomplete
without a strong word of caution about
their use. At times we can lose sight of the
ultimate purpose of the models when their
mathematics become too interesting. The
mathematics of financial models can be applied
precisely, but the models are not at all precise
in their application to the complex real world.
Their accuracy as a useful approximation to
that world varies significantly across time and
place. The models should be applied in practice
only tentatively, with careful assessment of
their limitations in each application.
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