THE WORK OF JOHN NASH IN

GAME THEORY

KUHN

It gives me great pleasure to chair this seminar on
the importance of Nash’'s work on the occasion of
the first Nobel award that recognizes the central
importance of game theory in current economic
theory. 1 shall be joined by two colleagues whom
I've known for over thirty years, John Harsanyi
and Reinhard Selten, two new friends, Jérgen
Weibull and Eric Van Damme, and John Nash,
whom I've known since we were graduate students
together in Princeton forty-six years ago.

The timing of these awards has historical signi-
ficance, since this year is the fiftieth anniversary of
the publication of “The Theory of Games and
Economic Behavior” [52] by the Princeton
University Press. Although Von Neumann had laid
the mathematical foundation of the theory of
games in his paper entitted “Zur Theorie der
Gesellshaftsspiele” [51], published in the Mathe-
matische Annalen in 1928, it was largely through
the collaboration of Von Neumann and Morgenstern
that economists learned of this new tool for
analyzing economic problems.

Some of you may have read Morgenstern's own
account [33] of this collaboration. There is a new
historical study [29] by Robert Leonard of the
University of Quebec at Montreal that points out
that “understandably, but regrettably, Morgenstern’s
reminiscence sacrificies some of the historical
complexity of the run up to 1944". Leonard’s study
gives most of the credit for the creation of game

theory to Von Neumann who had written essentially
all of the mathematical manuscript nine months
before Morgenstern ever saw it. Nevertheless, had
Von Neumann and Morgenstern never met, it
seems unlikely that we would be here today cele-
brating the central réle of the theory of games in
economics.
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This leads to a natural question which has been
asked repeatedly by journalists in the last two

months: “Why did it take fifty years for these new -

ideas to be recognized?”. To give a partial answer
to this question, we must look more closely at the
developments in the late forties and early fifties. A
crucial fact is that Von Neumann's theory was too
highly mathematical for economists. Therefore, the
theory of games was developed almost exclusively
by mathematicians during this period. To describe
the spirit of the time, allow me to quote from Robert
J. Aumann’s magnificient article [3] on game theory
in the New Palgrave Dictionary “The period of the
late 40's and early 50's was a period of excitement
in game theory. The discipline had broken out of
its cocoon and was testing its wings. Giants walked
the earth. At Princeton, John Nash laid the
groundwork for the general non-cooperative theory
and for cooperative bargaining theory. Lloyd
Shapley defined the value for coalitional games,
initiated the theory of stochastic games, coinvented
the core with D.B. Gillies, and together with John
Milnor developed the first game models with a
continuum of players. Harold Kuhn reformulated
the extensive form of a game, and worked on
behavior strategies and perfect recall. Al Tucker
discovered the Prisoner’s Dilemma, and supported
a number of young game theorists through the
Office of Naval Research”.

HARSANYI
When did Tucker discover the Prisoner’s Dilemma?
KUHN

Al Tucker was on leave at Stanford in the Spring
of 1950 and because of the shortage of offices, he
was housed in the Psychology Department. One
day a psychologist knocked on his door and asked
what he was doing. Tucker replied: “I'm working on
game theory”, and the psychologist asked if he
would give a seminar on his work. For that seminar,
Al Tucker invented the Prisoner's Dilemma as an
example of game theory, Nash equilibria, and the
attendant paradoxes of non-socially-desirable equi-
libria. A truly seminal example, it inspired dozens
of research papers and severa! entire books.

It is important to recognize that the results that |
have enumerated did not respond to some
suggestion of Von Neumann, nor did they follow
work that he had outlined or proposed; rather they
were revolutionary new ideas that ran counter to

Von Neumann'’s theory. In almost every instance,
it was a repair of some inadequacy of the theory
as outlined by Von Neumann and Morgenstern,
and indeed in the case of Nash's cooperative and
general non-cooperative theory, Von Neumann and
Morgenstern criticized it publicly on several
occasions. In the case of the extensive form, Von
Neumann claimed that it was impossible to give a
practical geometric extensive form. All of the results
that Aumann cited were obtained by members of
the Mathematics Department at Princeton Univer-
sity. At the same time, the RAND Corporation,
funded by the US Air Force, which was to be for
many years the other major center of game-
theoretic research, had just opened its doors in
Santa Monica.

This suggests a second part of our answer to the
question: “Why did it take so long for economists
to recognize game theory as crucial to their field?”
It is a historical fact that initially the main financial
support for research in this area came from military
agencies in the United States. Quoting Aumann
again, “The major applications were to tactical
military problems: defense from missiles, Colonel
Blotto assignment problems, fighter-fighter duels,
etc. Later the emphasis shifted to deterrence and
cold war strategy with contributions by political
scientists like Herman Kahn, Kissinger, and
Schelling”.

‘Why did it take fifty years for
these new ideas to be
recognized?”. To give a partial
answer to this question, we must
look more closely at the
developments in the late forties
and early fifties. A crucial fact is
that Von Neumann'’s theory was
too highly mathematical for
economists.

In any event, it was into this environment at
Princeton of research ferment that the twenty-year
old John Nash came in September of 1948. He
came to the Mathematics Department with a one
sentence letter of recommendation from R.L. Duffin
of Carnegie Institute of Technology. This letter said,
simply: “This man is a genius”. As his thesis advisor,
Professor AW. Tucker was to write several years
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later: “At times | have thought this recommendation
was extravagant, but the longer I've known Nash
the more | am inclined to agree that Duffin was
right”. If we do the arithmetic of subtracting the
date of Nash’s arrival in Princeton, which was
September 1948, from the date of submission by
Solomon Lefschetz to the Proceedings of the
National Academy of Sciences of the main result
of Nash’s thesis, November 1949, we find the
results for which he is being honored this week
were obtained in his first fourteen months of
graduate study. It is a fine goal to set before the
graduate students who are in the audience today.
We shall return to the thesis later.

A second part of our answer to
the question: “Why did it take so
long for economists to recognize
game theory as crucial to their
field?” It is a historical fact that
initially the main financial support
for research in this area came
from military agencies in the
United States. “The major
applications were to tactical
military problems: defense from
missiles.

Although the speed with which Nash obtained
these results is surprising, equally surprising and
certainly less widely known is that Nash had
already completed an important piece of work on
bargaining while still an undergraduate at the
Carnegie Institute of Technology. This work, a
paper for an elective course in international
economics, possibly the only formal course in
economics he has ever had, was done in complete
ignorance of the work of Von Neumann and
Morgenstern. In short, when he did this work he
didn’t know that game theory existed. This result,
which is a model of theoretical elegance, posits
four reasonable requirements or axioms: (1), that
any solution should be invariant under positive
linear affine transformations of the utility functions,
(2), that the solution should be efficient in the
sense of Pareto optimality, (3) that irrelevant
alternatives should not change the outcome of the
solution, and (4), that bargaining problems with
symmetric outcome sets should have symmetric

solutions. If these four reasonable conditions are

- satisfied then there is a unique solution, namely,

the outcome that maximizes the product of the
player’s utilities. There is evidence in the published
form of this paper, [37], that before it appeared in
Econometrica in 1950, he had met Von Neumann
and Morgenstern. This evidence is a reference to
Cournot, Bowley, Tintner, and Fellner. It is almost
certain that these were added at the suggestion of
Morgenstern, because | don't think John has even
read these papers as of now.

If it is clear that Nash had not read those writers, it
is equally clear that this paper was written by a
teenager. The evidence is that the objects in the
example to be bargained over are a bat, a ball, a
toy, and a knife. No amount of urging by his
colleagues, or by the editor of Econometrica,
persuaded John to change this example.

I should now like to discuss the thesis itself and
show you some sections of John's work from the
actual document. We already know that the main
result, the definition of a Nash equilibrium, and a
proof of existence had been completed prior to
November 1949, the date of submission by
Lefschetz to the National Academy of Sciences.
The thesis itself was completed and submitted
after the persistent urging and counsel of
Professor Tucker. John always wanted to add
more material, and Tucker had the wisdom to say
‘get the result out early”. It was submitted and
accepted by the Mathematics Department in May
of 1950.

The formal rules at Princeton requiere that the
thesis must be read by two professors, who prepa-
re a report evaluating the work. In this case, the
readers were Tucker and the statistician, John
Tukey; the evaluation was written by Tucker himself.
He wrote, “This is a highly original and important
contribution to the Theory of Games.lt develops
notions and properties of “non-cooperative games”,
finite n-person games which are very interesting in
themselves and which may open up many hitherto
untouched problems that lie beyond the zero-sum
two-person case. Both in conception and in
execution this thesis is entirely the author's

»

own-.

In my discussion of the thesis itself, | shall try not
to duplicate observations that will be made by
later speakers. Some overlap is inevitable. For
example, the abstract begins boldly: “This paper
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introduces the concept of a non-cooperative game
and develops methods for the mathematical
analysis of such games”. Take careful note, there
had been no general theory of non-cooperative
games before this thesis. Although he was using
the same strategic form as had been developed
by Von Neumann, the theory which occupies fully
half of the Von Neumann and Morgenstern book
deals with cooperative theory envisaging coalitions,
side-payments, and binding agreements. In addition,
they proposed as a solution concept a notion we
now call a “stable set”, which need not exist for
every game. By contrast, Nash proved by page
6 of his thesis that every n-person finite non-
cooperative game has at least one (Nash) equili-
brium point. This is a profile of mixed strategies,
one for each player, which is such that no player
can improve his payoff by changing his mixed
strategy unilaterally.

The entire thesis is 27 pages of typescript, very
generously double-spaced. Frankly, | have always
considered the most important sections to be the
first 6 pages summarized above and the last pages
(from page 21 to 26) on motivation, interpretation,
and applications. For many years, | have accused
John of padding the thesis in the middle section
(15 pages in all).

The two interpretations which form the essential
motivation of work to be described by later
speakers occur in the last pages of the thesis. On
page 21, we find: “We shall now take up the
mass action interpretation of equilibrium points”.
This interpretation will be discussed in detail by
Selten and Weibull. The second interpretation is
found on page 23, where we read: “We now sketch
another interpretation. . . investigating the question:
what would be a ‘rational” prediction of the
behavior to be expected of rational playing the
game in question”. This interpretation will be
discussed by van Damme. It is important to
recognize that, although these very influential
interpretations are explicitly in the thesis, they
appear in no other publication by Nash.

To conclude my introduction to this seminar, |
shall quote Aumann [3] again:

“IThe Nash] equilibrium is without
doubt the single game theoretic
solution concept that is most frequently
applied in economics. Economic
applications include oligopoly, entry

and exit, market equilibrium, search,
location, bargaining, product quality,
auctions, insurance, principal-agent
[problems], higher education, discri-
mination, public goods, what have you.
On the political front, applications
include voting, arms control and
inspection, as well as most interna-
tional political models (deterrence, etc.).
Biological applications all deal with
forms of strategic equilibrium; they
suggest an interpretation of equilibrium
quite different from the usual overt
rationalism. We cannot even begin to
survey all of this literature here”.

It is now my pleasure to introduce an economist
whom | have known since we were co-directors of
a Summer Institute on Bargaining and Conflict in
Princeton in 1962: John Harsanyi.

HARSANYI

In the short period of 1950-53, John Nash published
four brilliant papers ([35], [37], [38], [39]), in which
he made at least three fundamentally important
contributions to game theory:

(1) He introduced the distinction between coope-
rative and non-cooperative games. The former
are games in which the players can make
enforceable agreements and can also make
irrevocable threats to other players. That is to
say, they can fully commit themselves to specific
strategies. In contrast, in non-cooperative games,
such self-commitment is not possible'.

(2) As a natural solution concept for non-coope-
rative games, he introduced the concept of
equilibrium points ([35], [38]), now usually described
as Nash equilibria. He also established their
existence in all finite games2.

(3) As a solution concept for two-person coope-
rative games, he proposed the Nash bargaining
solution, first for games with fixed threats [37),
and later also games with variable threats [39].
He also showed that, in the latter case, the two
player's optimal strategies will have maximin and
minimax properties.

The best way to understand the importance of
Nash’s contributions is by comparing the state of
game theory just after publication of Von Neumann
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and Morgenstern’s book in 1944 with its state
after publication of Nash's four papers in
1953.

Von Neumann and Morgenstern’s book contains
an excellent mathematical analysis of one class
of non-cooperative games, viz. of two-person
zero-sum games and of the minimax solution for
such games. It contains also an excellent
mathematical discussion of one cooperative
solution concept, that of stable sets, for many
specific games.

Yet, it so happens that the concept of two-person
zero-sum games has very few real-life applications
outside of the military field. The concept of stable
sets has even fewer empirical applications.

Had these two distinguished authors had Nash's
notions of cooperative and non-cooperative games
available to them, then presumably they would
have asked the question of how to act rationally
in a two-person nonzero-sum game or in a more-
than-two-person game if this is played as a non-
cooperative game, permitting no enforceable
agreements and no irrevocable threats. Perhaps
they would have asked also whether one could not
find for cooperative games a more convincing
solution concept than stable sets are. For instance,
whether one could not find a solution concept
yielding sharper predictions about the players’
actual payoffs than the concept of stable sets
does.

Of course, in actual fact, they did not have these
two notions available to them and therefore did
not ask these two questions. But | merely want
to point out how much our ability to ask important
game theoretic questions was enhanced by Nash’s
work.

Nash’s contributions described above under (1),
(2), and (3) had an almost immediate effect on
game-theoretic research. At first their effect was to
encourage game theorists to develop the theories
of cooperative games and of non-cooperative
games as virtually separate disciplines, and for
some time to devote much more effort to devise
alternative cooperative solution concepts than to
further development on non-cooperative game
theory.

Then, in about the decade 1970-80, the focus of
game theoretic research shifted once more. Interest

in cooperative solution concepts decreased whereas
interest in non-cooperative games and in non-
cooperative-game models of cooperative games
substantially increased.

This shift was due to a number of different factors.
But one of these factors was what came to be
known as Nash's program. One of Nash's papers
([38], p. 295) contains the following interesting
passage:

“The writer has developed a “dynamical’
approach to the study of cooperative games
based on reduction to non-cooperative form.
One proceeds by constructing a model of
the pre-play negotiation so that the steps
of [this] negotiation become moves in a
larger non-cooperative game. . . describing
the total situation.

This larger game is then treated in terms of
the theory of this paper® . . . and if values
are obtained [then] they are taken as the
values of the cooperative game. Thus, the
problem of analyzing a cooperative game
becomes the problem of obtaining a suitable,
and convincing, non-cooperative model for
the negotiation”.

When game theorists speak of “Nash’s program”,
it is this two-paragraph passage they have in
mind. That is to say, they are talking about the
program of trying to reduce cooperative game to
non-cooperative games by means of suitable
non-cooperative models of the bargaining process
among the players.

The best way to understand the
importance of Nash’s
contributions is by comparing the
state of game theory just after
publication of Von Neumann and
Morgenstern’s book in 1944 with
its state after publication of
Nash'’s four papers in 1953.

it is an interesting fact of intellectual history (if |
am right in my reading of this history) that Nash’s
papers in the early 1950's at first encouraged
game theorists to cuitivate cooperative and non-
cooperative game theory as largely independent
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disciplines, with a concentration on cooperative
theory. But twenty-five years later they encouraged
a shift to non-cooperative game theory and to
non-cooperative models of the negotiations
among the players.

Both Reinhard Selten and | were very pleased
indeed when we learned that we received our
Nobel Memorial Prizes in Economics together with
John Nash. Not only do we both have the highest
regard for his work, but our own work in game
theory has been to an important extent based on
his.

One of Reinhard’s important contributions was his
distinction between perfect and imperfect Nash
equilibria. It was based on his realization that even
strategy combinations fully satisfying Nash's
definition of Nash equilibria might very well contain
some Jjrrational strategies. To exclude such
imperfect Nash equilibria containing such irrational
strategies, at first he proposed what now are
called subgame-perfect equilibria (Selten, [45]).
Later he proposed the even more demanding
concept of trembling-hand perfect equilibria
(Selten? [46]).

Reinhard’s work on evolutionarily stable strate-
gies was likewise based on the concept of Nash
equilibria.

In my own case, an important part of my own
work was likewise based on Nash's results.
Thus, in my first game-theoretic paper [17], my
main point was to show the mathematical
equivalence of Nash’s and of Zeuthen’s bargaining
models.

In the same paper (pp. 152-53), | pointed out an
interesting corollary to Nash's theory of optimal
threats: Suppose we measure the costs of a
conflict to either party in terms of Von Neumann-
Morgenstern utilities. Suppose also that one bar-
gainer makes a threat against the other. Then this
will strengthen his own bargaining position only
if carrying out his threat would increase the cost
of a conflict for his opponent in a higher propor-
tion than it would increase the costs of a conflict
for him.

In a later paper [18], | extended the Shapley value
to games without transferable utility and showed
that my new solution concept was not only a gene-
ralization of the Shapley value, but also a direct

generalization of Nash’'s two-person bargaining
solution with variable threats.

A Nash equilibrium is defined as a strategy
combination with the property that every player's
strategy is a best reply to the other players’
strategies. This of course is true also for Nash
equilibria in mixed estrategies. But in the latter
case, besides his mixed equilibrium strategy,
each player will also have infinitely many alter-
native strategies that are his best replies to the
other players’ strategies. This will make such
equilibria potentially unstable.

In view of this fact, | felt it was desirable to show
[20], that “almost all” Nash equilibria can be
interpreted as strict equilibria in pure strategies of
a suitably chosen game with randomly fluctuating
payoff functions.

KUHN

In the early sixties, | had the great good fortune to
hire both John Harsanyi and our next speaker
as consultants to a project that | initiated for
a research company in Princeton, called MATHE-
MATICA. The project was founded by the Arms
Control and Disarmament Agency and a major
topic was games with incomplete information. Our
speaker has written about this experience in his
autobiographical note [47]:

SELTEN

When John Nash published his basic papers on
‘equilibrium points in n-person games’ [35], and
‘non-cooperative games’ [38], nobody would have
foretold the great impact of Nash equilibrium on
economic and social science in general. It was
even less expected that Nash's equilibrium point
concept would ever have any significance for
biological theory. To most game theorists it came
as a complete surprise that beginning with the
pioneering paper by Maynard Smith and Price [31]
non-cooperative game theory, as it was founded
by Nash, became one of the central tools for
understanding the evolutionary logic of animal and
plant interaction.

EVOLUTIONARY STABILITY

Maynard Smith and Price [31] introduced the
concept of an evolutionarily stable strategy (ESS).
Initially they were not aware of the relationship
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between the concept of an ESS and that of a
Nash equilibrium. Rational game theory looked at
mixed strategies as produced by conscious rando-
mization. Nash’s interpretation of a mixed
equilibrium as a mass action phenomenon was
buried in his unpublished dissertation and not
found in text books on game theory. In biology
the mass action interpretation is very natural and
guided the work on evolutionary stability already
from its beginning.

in their original paper, Maynard Smith and Price
[31] restricted their attention to two-person games
in normal form. They defined an ESS as a strategy
prescribed by a symmetric equilibrium point and
imposed on this strategy an additional stability
requirement. This requirement had its roots in the
idea that a population in evolutionary equilibrium
should be stable against the evasion of mutants.
There is no problem of instability if the mutant
does not play a best reply to the symmetric
equilibrium. However, if it plays an alternative best
reply, i.e., a best reply different from the equili-
brium strategy, it may spread by genetic drift.
Maynard Smith and Price argued that this is
excluded if against the alternative best reply the
equilibrium strategy achieves a higher payoff than
the alternative best reply itself does. This is the
additional stability requirement in the definition of
an ESS.

Nowadays it almost seems to be obvious that
the correct application of Darwinism to problems
of social interaction among animals requires the
use of non-cooperative game theory, but when this
idea was first conceived it was a r evolutionary
great insight. Of course the strategies of animals
“and plants are not the result of conscious delibe-
ration. They are thought of as behavioral programs
transferred by genetical inheritance from generation
to generation. Game equilibrium is achieved by
the process of natural selection which drives orga-
nisms towards the maximization of fitness.
Roughly speaking, Darwinian fitness is the
expected number of surviving offspring.

The original restriction to symmetric two-person
games was soon removed and much more general
definitions of a ESS were elaborated. The fruit-
fulness of game-theoretic thinking in biology is
revealed by a multitude of intriguing applications.
References to the theoretical and empirical litera-
ture can be found in our review paper (Hammerstein
and Selten [16]).

THE CRISIS OF DARWINIAN ADAPTATION
THEORY

In the early forties, biological thought on evolution
reached a consensus often referred to as the
‘new synthesis'. The apparent contradiction between
Mendelian inheritance and gradual adaptation had
been resolved by the population genetic work of
Fisher [11], Haldane [14], and Wright [55]. Fisher's
famous ‘fundamental theorem of natural selection’
had shown that under appropriate assumptions
about the genetical system, the mean fitness of a
population rises untii a maximum is reached.
However, in the sixties a new generation of popu-
lation geneticists became aware of the fact that
plausible genetic systems are very unlikely to satisfy
the assumptions of Fisher's theorem. In the frame-
work of a standard selection model, Moran [32]
found examples in which mean fitness decreases
over time until an equilibrium is reached. He looked
at a two-locus model in which an evolving trait is
coded for by two genes. Later Karlin [26] showed
that these examples are not just degenerate
cases.

The curious phenomenon of decreasing mean
fitness becomes understandable if one looks at
the nature of the resulting equilibrium. In this equili-
brium one finds genotypes of high and low fitness
but the offsprings of high fitness genotypes can
have the same mean fitness as those of low
fitness genotypes. This is an effect of recombi-
nation which tears genes at different loci apart.
The phenomenon of decreasing mean fitness is
a serious challenge to the theory of Darwinian
adaptation. Some population geneticists came to
the conclusion that the whole idea of fitness maxi-
mization has to be discarded as the main expla-
natory principle of biological evolution. The
difficulties arise in the context of what is called
‘frequency-independent selection’ or, in other
words, when there is no game interaction. In the
presence of game interaction, the situation is even
less favorable for the maximization of fithness. Of
course, mean fitness is not maximized by game
theoretic equilibrium, but Moran's and Karlin's
results mean that game equilibrium is not neces-
sarily reached.

By these developments, Darwinian adaptation
theory was thrown into a true crisis. However, very
few empirically oriented biologists were really
disturbed by this problem. To them the crisis
seemed to be one of mathematical theory rather
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than a failure of Darwinism as an explanation of
biological facts. They continued to be impressed
by the overwhelming empirical evidence for
adaptation by natural selection. Nevertheless, the
problem posed a serious challenge to theory.

THE STREETCAR THEORY

The process which generates the phenomenon of
decreasing mean fitness governs the adjustment
of genotype frequencies in the absence of
mutations. Eshel and Feldman [10] were the first
to ask the question under what conditions a stable
equilibrium reached by this process is also stable
against the invasion of mutants. As has been shown
by Moran [32] and Karlin [26], the ‘internal stability’
with respect to the process without mutation does
not necessarily lead to fitness maximization of
game equilibrium. However, they succeeded to
show that for an internally stable state in a
sufficiently small vicinity of an ESS, the inflow of a
destabilizing mutation has a tendency to initially
move the system in the direction of the ESS.

This opens the possibility that the notion of an
ESS has more significance for the analysis of
genetic systems than one might think if one looks
only at internal stability and not also at external
stability against the invasion of mutants. Admittedly,
the results of Eshel and Feldman do not yet go
very far in his direction but they were an ingenious
step towards a new genetic interpretation of
Darwinian adaptation. In the process of writing our
review paper for the handbook of game theory
(Hammerstein and Selten [16]), we became
intrigued by the possibility of providing a better
foundation for the application of non-cooperative
game theory in biology along the lines of Eshel
and Feldman. We ended up in proving two
theorems whose biological implications we like to
describe by an analogy elaborated by one of
us (Hammerstein [15]). The analogy involves a
streetcar whose stops correspond to internally
stable states. Only at the terminal stop the popu-
lation state is phenotypically stable in the sense
that the probabilities of pure strategies cannot be
changed any more by the invasion of a mutant.

The first theorem shows that only a Nash equili-
brium can be phenotypically stable in a standard
two-locus model of population genetics with game
interaction. This means that in the long run the
process of natural selection and mutation if con-
verges at all, must converge to Nash equilibrium.

It therefore turns out that Nash equilibrium is of
central importance for evolutionary biology. Of
course, the streetcar may often stay for a while at
a temporary stop at which some passengers exit
and others enter before, finally, the terminal stop
is reached at which it stays much longer.

The second theorem shows that a phenotypically
monomorphic population state can be a terminal
stop if and only if it is an ESS in the sense of
Maynard Smith and Price [31]. Wherever one has
reason to suppone that a trait is phenotypically
monomorphic, this result establishes a firm foun-
dation for the concept of an ESS. However,
polymorphism if often observed in nature and in
this respect Nash equilibrium is of more far
reaching significance.

CONCLUDING REMARK

Originally, Von Neumann and Morgenstern [52]
developed game theory as a mathematical method
especially adapted to economics and social
science in general. In the introduction of their
book, they emphasized their view that methods
taken over from the natural sciences are inadequate
for their purpose. They succeeded in creating a
new method of mathematical analysis not
borrowed from physics. In the case of game theory
the flow of methodological innovation did not go
in the usual direction from the natural to the
social sciences but rather in the opposite one. The
basis for this extremely successful transfer is the
concept of Nash equilibrium.

KUHN

About five years ago, the Economics Department
at Princeton University was fortunate to have the
next speaker as a visiting professor. He has been
in the forefront of recognizing the importance of
Nash’s mass action interpretation: Jérgen Weibull.

WEIBULL
THE MASS ACTION INTERPRETATION

In his unpublished Ph.D. dissertation, John Nash
provided two interpretations of his equilibrium
concept for non-cooperative games, one rationa-
listic and one population-statistic. In the first,
wpich became the standard interpretation, one
imagines that the game in question is played only
once, that the participants are “rational’, and that

28 Revista Universidad Eafit - No. 98



they know the full structure of the game. However,
Nash comments: “It is quite strongly a rationalistic
and idealizing interpretation” ([36], p. 23). The
second interpretation, which Nash calls the mass-
action interpretation, was until recently largely
unknown (Leonard [28], Weibull [53], Bjérnerstedt
and Weibull [6]. Here Nash imagines that the game
in question is played over and over again by
participants who are not necessarily “rational” and
who need not know the structure of the game:

“It is unnecessary to assume that the
participants have full knowledge of the total
structure of the game, or the ability and
inctination to go through any complex
reasoning processes. But the participants
are supposed to accumulate empirical
information on the relative advantages of the
various pure strategies at their disposal.

To be more detailed, we assume that there
is a population (in the sense of statistics) of
participants for each position of the game.
Let us also assume that the ‘average playing’
of the game involves n participants selected
at random from the n populations, and that
there is a stable average frequency with
which each pure strategy is employed by
the ‘average member’ of the appropriate
population.

Since there is to be no collaboration between
individuals playing in different positions of
the game, the probability that a particular n-
tuple of pure strategies will be employed in
a playing of the game should be the product
of the probabilities indicating the chance of
each of the n pure strategies to be employed
in a random playing” ({361, pp. 21-22).

Nash notes that if s, is a population distribution
over the pure strategies a A, available to the i'th
player position, then s = (s),_, is formally identical
with a mixed strategy « profile, and the expected
payoff to any pure strategy in a random matching
between an n-truple of individuals, one from each
player population, is identical with the expected
payoff n. (s) to this strategy when played against
the mixed strategy profile s:

“Now let us consider what effects the
experience of the participants will produce.
To assume, as we did, that they accumulate
empirical evidence on the pure strategies at

their disposal is to assume that those playing
in position i learn the numbers = (s). But if
they know these they will employ only optimal
purse strategies [...]. Consequently, since s,
expresses their behavior, s, attaches positive
coefficients only to optimal pure strategies,
[...]. But this is simply a condition for s to
be an equilibrium point.

Thus the assumption we made in this ‘mass-
action' interpretation lead to the conclusion
that the mixed strategies representing the
average behavior in each of the populations
form an equilibrium point”. (Op cit., p. 22)°.

These remarks suggest that Nash equilibria could
be identified as stationary, or perhaps dynamically
stable, population states in dynamic models of
boundedly rational strategy adaptation in large
strategically interacting populations. In spirit, this
interpretation is not far from Friedman’s [13] sub-
sequent “as if’ defense of microeconomic axioms.
For just as Nash argued that boundedly rational
players will adapt toward strategic optimality,
Friedman argued that only profit maximizing firms
will survive in the long run under (non-strategic)
market competition. Moreover, the view that
games are played over and over again by indi-
viduals who are randomly drawn from large popu-
lations was later independently taken up by
evolutionary biologists (Maynard Smith and Price
[31], Taylor and Jonker [49]).

NOTATION AND PRELIMINARIES

Consider a finite n-player game G in normal (or
strategic) form. Let A, be the pure-strategy set of
player position i e | ={1,..n}, S, its mixed-
strategy simplex, and S = =S, the polyhedron of
mixed-strategy profiles. For any player position j,
pure strategy o €A, and mixed strategy s, €S, let
s,, denote the probability assigned to a. A strategy
profile s is called interior if all pure strategies are
used with positive probability. The expected payoff
to player position i when a profile s € S is played
will be denoted n(s), while m,_(s) denotes the payoff
to player i when he uses pure strategy o €A
against the profile s € S. A strategy profile s € S
is a Nash equilibrium if and only if s, O implies
T (s) =max B e A, niB(s).

In the spirit of the “mass-action” interpretation,
imagine that the game is played over and over
again by individuals who are randomly drawn from
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(infinitely) large populations, one population for each
player position i in the game. A population state
is then formally identical with a mixed-strategy
profile s € S, but now each component S, € Si
represents the distribution of pure strategies in
player population i, i.e., s, is the probability that a
randomly selected individual in population j will
use pure strategy o €A, when drawn to play the
game. In this interpretation =, (s) is the (expected)
payoff to an individual in player population i who
uses pure strategy a - an “o-strategist’™ and ni(s)
= Eﬁsmnm(s) is the average (expected) payoff in
player population i, both quantities being evaluated
in population state s.

Suppose that every now and then, say, according
to a statistically independent Poisson process,
each individual reviews her strategy choice. By the
law of large numbers the aggregate process of
strategy adaptation may then be approximated by
deterministic flows, and these may be described in
terms of ordinary differential equations.

INNOVATIVE ADAPTATION

We first consider the case when strategy adapta-
tion is memory-less in the sense that the time rate
of strategy revision and the choise probabilities of
strategy-reviewing individuals are functions of the
current state s (only):

S0 = f s (1)

for some functions f,_: S — R. The quantify f_(s) thus
represents the net increase per time unit of the
population share of a-strategists in player population
i when the overall population state is s. The
(composite) function f is assumed to be Lipschitz
cotinuous and such thatall solution trajectories starting
in S remain forever in S. Such a function f will be
called a vector field for (1).

The class of population dynamics (1) clearly allows
for an innovative element; some individuals may
begin using earlier unused strategies, either inten-
tionally, by way of experimentation or calculation,
or unintentionally, by way of mistakes or muta-
tions. Indeed, a certain degree of inventiveness in
this sense is easily seen to imply that only those
population states that constitute Nash equilibria
can be stationary®. The requirement is simple; if
there is some (used or unused) pure strategy which
results in a payoff above the current average payoff
in the player population in question, then some such

strategy will grow in population share. Formally, for
any population state s € S and player position i € |,
let B(s) denote the (possibly empty) subset of
better-than-average pure strategies, Bi(s) ={a e A
m(s)> ni(s)}. Inventiveness can the be forma-
lized as

[IN]: If B(s) # &, then f_(s) > 0 for some a € B(s).

This condition is, for instance, met if reviewing
individuals move toward the best replies to the
current population state. Note that [IN] requires no
knowledge about payoffs to other player positions,
nor is any detailed knowledge of the payoffs to one's
own strategy set necessary. [t is sufficient that
individuals on average tend to twitch toward some
of the better-than-average performing strategies.

Proposition 1 Suppose f meets [IN]. If a population
state s is stationary under the associated dynamics
(1), then s constitutes a Nash equilibrium of G.

An example of innovative adaptation is give by

i (S)=1i(S)-Sia T nj(S) ()
BeA

where z;" (S)=max{rj, (S)-n;(S),0}; the excess
payoff to pure strategy a over the average payoff
in its player population. It is not difficult to verify that
f+ meets [IN]. The associated population dynamics
(1) is nothing else than the continuous-time version
of the iteration mapping introduced in Nash'’s [38]
influential existence proof for equilibrium points -
later adopted in general equilibrium theory, see
Arrow and Debreu [1].

In order to incorporate memory in the dynamic
process of strategy adaptation, one may introduce
real variables p,_, one for each player position / and
pure strategy o € A, that represent the i'th popu-
lation’s recollection of earlier payoffs to pure strategy
o. Assume that the recalled payoff to any pure
strategy o € A, changes with time according to

Pl®) = hy(m [s®) P, O, (3)

where h, is a Lipschitz continuous function such
that the recalled payoff changes only if the current
payoff differs from the recalled payoff (h_(n, , p, ., t)
=0= 7tiot = piu)'

The full adaptation dynamics with memory is then
a system of diffenrential equations in the state
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vector x = (s, p), where p moves according to (3)
and s according to

Su (0 = £ [s(V), PV (@)

A counterpart to the earlier requirement [IN] of
inventiveness is: if there is some (used or unused)
pure strategy which is recalied to result in a payoff
above the average of the currently recalled payoffs
in the player population in question, then some
such pure strategy will increase its population
share. Formally, for any state (s, p) and player
position i € I, let B, (s,p) = {o« € A, : p,, > SﬂEAi,
siﬁpiB}. Inventiveness can then be formalized as

[IN7: If B(s,p) # &, then f _(s,p) > 0
for some o € B, (s, p).

The following extension of proposition 1 is straight-
forward:

Proposition 2 Suppose f meets [IN’]. If(s, p) is
stationary under (3) and (4), then s is a Nash
equilibrium of G&.

A special case of memory processes of the above
type is when the recalled payoff to a pure strategy
is the time average of its earlier payoffs: p,_(t) = j(t)
m, [S(t)]dt. This is the memory process in fictitious
play (Robinson [40], written in continuous time. (In
that model players always use best replies against
the time average of past play). Differentiation of
pia(t) with respect to t gives

1
hia(niavpia-t)=;(nia_pia ), (5)

a function which can be slightly modified so that it
belongs to the above-discussed class (add an
arbitrarily short time interval before t = 0).

IMITATE ADAPTATION

It may be argued that the above classes of popu-
lation dynamics go somewhat beyond the spirit of
the mass-action interpretation since they presume
that individuals perform a certain amount of calcu-
lations. Therefore, now assume no memory and
no inventiveness as defined above. Thus, indi-
viduals now switch only between strategies already
in use, and they do so only on the basis of these
strategies’ current performance. Technically, this
means that the population dynamics (1) has a
vector field f of the form

fo(8) = 9,(8) 8, (©)

The invoived functions g, will be called growth-
rate functions - g, (s) being the growth rate of
the population share of pure strategy o in player
population i/ when the population state is s. No
vector field of the form (6) is innovative in the
sense of condition [IN], because if all individuals in
a player population initially use only one (or a few)
pure strategy then they will continue doing so
forever, irrespective of whether some unused
strategy yields a high payoff or not. Consequently,
stationarity does not imply Nash equilibrium for
the present class of dynamics, which will be calle
imitative.

A prime example of such dynamics is the so-called
replicator dynamics used in evolutionary biology
(Taylor and Jonker [49], Taylor [48]). In this strand
of literature, pure strategies represent genetically
programmed behaviors, reproduction is asexual,
each offspring inherits its parent's strategy, and
payoffs represent reproductive fitness. Thus . (S)
is the number of (surviving) offspring to an «o-
strategist in population /, and =(s) is the average
number of (surviving) offspring per individual in
the same population. In the standard version of
this population model, each pure strategy’s growth
rate is proportional to its current payoff®;

9,,(8) =7 (s) -7 (s) (7)

We will here consider a broad class of vector
fields which contains the replicator vector field as
a special case. The defining requirement is close
in spirit to that in the previous section: If there
exists a pure strategy which results in a payoff
above average in its player population (whether
this pure strategy be currently used or not), then
some such pure strategy has a positive growth
rate. Hence, if all such strategies are present in
the population, then some such population share
will grow. Formally:

[POS]: If B(s) = &, then g (s) >0
for some o e B(s).

The next proposition establishes the following impli-
cations under payoff positive imitation: (a) if all
strategies are present in a stationary population
state, then this constitutes a Nash equilibrium, (b)
A dynamically stable population state constitutes
a Nash equilibrium, (c) If a dynamic solution
trajectory starts from a population state in which
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all pure strategies are present and the trajectory
converges over time, then the limit state is a Nash
equilibrium10. Claim (b) is a generalization of a
result due to Bomze [7] for the single-population
version of the replicator dynamics as applied to
symmetric two-player games, and (c) generalizes
a result due to Nachbar [34] (See Weibull [54] for
a proof).

Proposition 3 Suppose g meets [POS], and
consider the associated population dynamics (1)
where f is defined in (6).

(a) If s is interior and stationary, then s is a Nash
equilibrium.

(b) If s is dynamically stable, then s is a Nash
equilibrium.

(c) If s is the limit of some interior solution
trajectory, then s is a Nash equilibrium.

Note that claims (a) and (c) involve hypotheses
that no pure strategies are extinct. Indeed, these
claims are otherwise not generally valid. Implication
(b), however, allows for the possibility that some
pure strategy is extinct. This is permitted because
dynamic stability by definition asks what happens
when the population state is slightly perturbed -in
particular, when currently extinct strategies enter
the population in small popufation shares.

CONCLUSION

The mass-action interpretation of Nash equilibria is
in stark contrast with the usual rationalistic
interpretation, but is closely related to ideas in
evolutionary game theory. It opens new avenues for
equilibrium and stability analysis of social and
economic processes, and suggests new ways to
combine insights in the social and behavior
sciences with economic theory.

KUHN

In Reinhard Selten's talk, he did not mention his
major discovery of two refinements of the concept of
Nash equilibria, the so-called subgame perfect
equilibria {45} and trembling-hand perfect equilibria
[46). A large body of research followed these
discoveries; it has been summarized in a magni-
ficed manner in a book [50] by our next speaker:
Eric van Damme.

VAN DAMME

Ideas, concepts and tools that were introduced by
John Nash [36] have been extremely important in
shaping modern economic theory. He introduced
the fundamental solution concept for non-coopera-
tive games, one of the main solution concepts for
cooperative games and he proposed the Nash
program for providing non-cooperative foundations
of cooperative concepts. In his analysis he intro-
duced seminal tools and techniques that served
as essential building blocks in the later deve-
lopment of the theory and that contributed to its
successful application. Below we provide a pers-
pective on Nash’s works and trace its influence on
modern economic theory.

The mass-action interpretation of
Nash equilibria is in stark contrast
with the usual rationalistic
interpretation, but is closely
related to ideas in evolutionary
game theory. It opens new
avenues for equilibrium and
stability analysis of social and
economic processes, and
suggests new ways to combine
insights in the social and behavior
sciences with economic theory.

NASH EQUILIBRIUM: THE RATIONALISTIC
INTERPRETATION

A non-cooperative game is given by a set of players,
each having a set of strategies and a payoff
function. A strategy vector is a Nash equilibrium if
each player's strategy maximizes his payoff if the
strategies of the others are held fixed. In his Ph.D.
thesis, Nash introduces this concept and he derives
several properties of it, the most important one
being existence of at least one equilibrium for
every finite game. In published work ([35], [38]),
Nash provides two alternative, elegant proofs, one
based on Kakutani's fixed point theorem, the other
based directly on Brouwer’'s theorem. These tech-
niques have inspired many other existence proofs,
for example, in the area of general equilibrium
theory (see [9)]).
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In the section “Motivation and Interpretation” of
his thesis, Nash discusses two interpretations of
his equilibrium concept. The first, “mass-action”
interpretation is discussed in Jérgen Weibull's
contribution to this seminar. Here, we restrict
ourselves to the “rationalistic and idealizing inter-
pretation” which is applicable to a game played
just once, but which requires that the players are
rational and know the full structure of the game.
Nash’s motivation runs as foliows:

“We proceed by investigating the question:
What would be a “rational” prediction of the
behavior to be expected of rational playing
the game in question? By using the princi-
ples that a rational prediction should be
unique, that the players should be able to
deduce and make use of it, and that such
knowledge on the part of each player of
what to expect the others to do should not
lead him to act out of conformity with the
prediction, one is led to the concept of a
solution defined before” [36].

In other words, a theory of rational behavior has to
prescribe the play of a Nash equilibrium since
otherwise the theory is self-destroying. Note that
the argument invokes three assumptions: (i) players
actively randomize in choosing their actions, (ii)
players know the game and the solution, and (iii)
the solution is unique. Later work has scrutinized
and clarified the role of each of these assumptions.
Harsanyi ({20]) showed that a mixed strategy of
one player can be interpreted as the beliefs (conjec-
tures) of the other players concerning his behavior.
This reinterpretation provides a “Bayesian” foun-
dation for mixed strategy equilibria and eliminates
the intuitive difficulties associated with them.
Aumann developed the concept of an interactive
belief system, which provides a formal framework
for addressing the epistemic conditions underlying
Nash equilibrium, i.e., it allows one to formalize
player's knowledge and to investigate how much
knowledge is needed to justify Nash equilibrium. In
2-player games less stringent conditions are suffi-
cient than in general n-player games. (Aumann and
Brandenburger [4]).

Since the rationalistic justification of equilibria relies
on uniqueness, multiplicity of equilibria is proble-
matic. Nash remarks that it sometimes happens
that good heuristic reasons can be found for
narrowing down the set of equilibria. One simple
example that Nash provides (Ex. 5 [38]) is the

game that is reproduced here in Figure 1. This
game has equilibria at (a, a) and (b, B), as well as
a mixed equilibrium. Nash writes that “empirical
tests show a tendency toward (a, «)”, but he does
not provide further details. One heuristic argument
is that (a, o) is less risky than (b, B), an argument
that is formalized by Harsanyi and Selten’s [23]
concept of risk dominance. This concept figures
prominently both in the literature that builds on the
“rationalistic interpretation” as well as in the litera-
ture that builds on the “mass-action” interpretation
of Nash equilibrium. We will return to it in
EQUILIBRIUM SELECTION.

o B

a |12 |14

b |-4,-1]| 21

THE NASH PROGRAM

I can be said that the ‘“rationalistic argument”
leading to Nash'’s equilibrium concept was already
discussed in Von Neumann and Morgenstern [52]
cf. their “indirect argument” (pp. 147-148). They
advocate the (equilibrium) solution implied for the
2-person zero-sum case, however, they argue that
this solution is not satisfactory for games outside
this class, since in these one cannot neglect
coalitions nor the possibility that players will want
to make payments outside the formal rules of the
game (p. 44). They argue that for these games
“there seems no escape from the necessity of
considering agreements concluded outside the
game” (p. 223) and they see themselves forced to
assume that coalitions and agreements concluded
outside of the game are respected by the contracting
parties (p. 224). Hence, they end up with having two
distinct theories.

Ideas, concepts and tools that
were introduced by John Nash
[36] have been extremely
important in shaping modern
economic theory.

Nash proposes to distinguish between cooperative
and non-cooperative games. In games of the latter
type, players are unable to conclude enforceable
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agreements outside the formal rules of the game.
Cooperative games allow such agreements. Nash
suggests that non-cooperative games are more
basic, that cooperative games may fruitfully be
analyzed by reformulating them as non-cooperative
ones and by solving for the Nash equilibria. This
approach has come to be known as the Nash
program. It allows unification of the theory and
enables a better understanding of the different
solution concepts that have been proposed in coo-
perative theory. (See Harsanyi [21] for an example
dealing with the Von Neumann and Morgenstern
stable set concept, also see BARGAINING
THEORY). By following the Nash program, an
abstract discussion about the “reasonableness” of
certain outcomes or principles can be replaced by
a more mundane discussion about the appro-
priateness of the rules of the games.

The non-cooperative approach also has its limi-
tations. First, values can be obtained only if the
game has a unique solution, i.e., one has to address
the equilibrium selection problem. Secondly, the
non-cooperative model must at the same time be
relevant -similar to reality in its essential aspects,
and mathematically tractable. Consequently, the
axiomatic approach- which aims to derive the out-
come directly from a set of ‘convincing’ principles,
is not redundant. On the contrary, if a solution can
be obtained from a convincing set of axioms, this
indicates that the solution is appropriate for a wider
variety of situations than those captured by the
specific non-cooperative model. As Nash concludes
“The two approaches to the problem, via the nego-
tiation model or via the axioms, are complementary;
each helps to justify and clarify the other”. ([39],
p. 129).

BARGAINING THEORY

According to orthodox economic theory, the
bargaining problem is indeterminate: The division
of the surplus will depend on the parties’
bargaining skills. Nash breaks radically with this
tradition. He assumes that bargaining between
rational players leads to a unique outcome and he
seeks to determine it. He solves the problem in the
2-person case and he derives his solution both by
means of the axiomatic approach and as the
outcome of a non-cooperative model.

In Nash [39] the axiomatic method is described
in the following way:

“One states as axioms several properties
that it would seem natural for the solution
to have and then one discovers that the
axioms actually determine the solution
uniquely”. ([39], p. 129).

In the case of the fixed-threats, Nash's basic
axioms are that rational players are characterized
by Von Neumann Morgenstern utility functions, and
that the bargaining situation is fully represented by
its representation, B in utility space. Three axioms
specify the relation which should hold between the
solution and the set B: (i) Pareto efficiency, (ii)
symmetry and (iii) independence of irrelevant
alternatives. The axioms determine the solution to
be that point on the north-east boundary of B
where the product of the utility gains, u,u,, is
maximized.

The non-cooperative approach
also has its limitations. First,
values can be obtained only if the
game has a unique solution, i.e.,
one has to address the
equilibrium selection problem.
Secondly, the non-cooperative
model must at the same time be
relevant -similar to reality in its
essential aspects, and
mathematically tractable.

Axiom (iii) states that, if the set of feasible utility
pairs shrinks but the solution remains available,
then this should remain the solution. This axiom is
more difficult to defend than the others and there
has been considerable discussion of it in the
literature. Nash writes that it is equivalent to an
axiom of “localization”, specifically “Thinking in
terms of bargaining, it is as if a proposed deal is to
compete with small modifications of itself and
that ultimately the negotiation will be understood
to be restricted to a narrow range of alternative
deals and to be unconcerned with more remote
alternatives”. ([39], p. 139). Recent developments
in non-cooperative bargaining theory (which build
on the seminal paper [42]) have confirmed this
interpretation. Namely, assume players alternate
in proposing points from B until agreement is
reached. Assume that if an offer is rejected there
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is a small but positive probability that negotia-
tions break down irrevocably. This game admits a
unique subgame perfect Nash equilibrium (see
EQUILIBRIUM REFINEMENT) and agreement is
reached inmediately. The equilibrium condition
states that each time each responder is indifferent
between accepting the current proposal and
rejecting it. Consequently, the equilibrium proposals
are close together when the stopping probabiliy
is small, hence, we obtain the “localization”
property. Indeed the equilibrium conditions imply
that both equilibrum proposals have the same Nash
product, hence, since they have the same limit,
they converge to the Nash solution.

Of course, it is gratifying to find that this natural
bargaining model implements Nash’s bargaining
solution. However, even more important is that this
application of the Nash program may clarify some
ambiguities concerning the choise of the threat
point in applications of the Nash bargaining model.
(See [5] for further discussion).

In the variable threat case, each party has a
choice how much pressure to put on the other. The
theory now has to determine both the threats
that the players will use in case they don't agree,
as well as the agreement that will be concluded.
Two additional axioms allow reduction of the
problem to the case with fixed threats and, hence,
determine the theory. The first is equivalent to
assuming that each player has an optimal threat
strategy, i.e., it is postulated that the problem
admits a solution. The second says that a player
cannot improve his payoff by eliminating some of
his strategies. In the non-cooperative approach,
Nash assumes that players first commit them-
selves to their threats. Players will be forced to
~execute their threats if they cannot come to an
agreement in the second stage. Each pair of
threats induces a (fixed-threat bargaining) subgame
in which the distinguished equilibrium that
maximizes the product of the utility gains is
selected. Applying backwards induction and using
the selection (i.e., by replacing each subgame with
its unique solution), the choice of threat strategy in
the first stage essentially reduces to a strictly
competitive game, i.e., this reduced first stage
game has an equilibrium with minmax properties.
Consequently, the overall game has a value and
optimal threat strategies. Needless to say, the
solution obtained by the non-cooperative approach
coincides with that obtained by means of the
axioms.

EQUILIBRIUM REFINEMENT

Nash equilibrium expresses the requirement that a
theory of rational behavior recommends to each
player a strategy that is optimal in case all of the other
players play in accordance with the theory. Itimposes
no conditions concerning behavior after a
deviation from the theory has occured. Van Neumann
and Morgenstern, however, already argued that a
solution concept should also address the question
of how to play when the others do not conform
and that, in the presence of “non-conformists”, a
believer in the theory should still be willing to follow
the theory’s advice. It turns out that not all Nash
equilibria have this desirable property: After a devia-
tion from the equilibrium has occured, a believer in
this equilibrium may prefer to deviate from it as well.
As an example, modify the game from Figure 1 such
that player 1 (the “row player”) makes his choise
before player 2, with this choice being revealed
before the latter makes his decision. The strategy
pair in which player 1 chooses a and player 2
responds with a no matter what player 1 chooses, is
a Nash equilibrium. However, the equilibrium action
of player 2 is not optimal if player 1 deviates and
chooses b: In that case player 2 prefers to deviate to
b. Foreseeing this, player 1 prefers to deviate to p.
The original equilibrium relies on a non-credible
threat of player 2.

A clear discussion of the credibility issue can
already be found in Nash’s work on variable threat
bargaining. Nash’s paper is appropriately called
“Two-person Cooperative Games” since it relies
essentially on the existence of an umpire who
enforces contracts and commitments. Nash writes
‘it is essential for the success of the threat that A
be compelled to carry out his threat if B fails to
comply. Otherwise it will have littte meaning. For,
in general, to execute the threat will not be some-
thing A would want to do, just of itself’ (Nash
[39], p. 130).

To eliminate equilibria that rely on non-credible
threats, various refinements of the Nash equilibrium
concept have been proposed, which will not be
surveyed here see [50]. Let us just note that two
papers of Reinhard Selten were fundamental. Selten
[45] argues that a theory of rational behavior has
to prescribe an equilibrium in every subgame since
otherwise at least one player would have an incen-
tive to deviate once the subgame is reached. He
calls equilibria having this property subgame
perfect. They can be found by a backwards induc-

Revista Universidad Eafit - No. 98 35



tion procedure. Unfortunately, this procedure gene-
rally does not eliminate all “questionable” equi-
libria. Selten [46] suggests a further refinement
that takes the possibility of irrational behavior
explicitly into account, i.e., he suggests viewing
perfect rationality as a limiting case of incomplete
rationality. Formally, he considers slightly perturbed
versions of the original game in which players with
small probabilities make mistakes and he defines
a (trembling hand) perfect equilibrium as one that
is a limit of equilibrium points of perturbed games.
It is interesting to note that Nash already
discussed a game with an imperfect equilibrium
(see Ex. 6 in [39]).

This suggestion to discriminate between equilibria
by studying their relative stabilities had already
been made in Nash's work on bargaining (see
EQUILIBRIUM SELECTION). An important diffe-
rence between Selten’s approach and that of Nash,
however, is that Selten requires stability only with
respect to some perturbation, while Nash insisted
on stability against all perturbations in a certain
class. Consequently, a game typically allows
multiple perfect equilibria. Kohlberg and Mertens
[27] have argued that Selten’s perfectness require-
ment is not restrictive enough and they have
proposed various refinements that requiere stability,
of sets of equilibria, with respect to all pertur-
bations in a certain class.

At present, the debate is still going on of
whether these strong stability requirements indeed
capture necessary requirements of rational beha-
vior. What can be said, however, is that Nash’'s
ideas were fundamental in shaping this research
program.

EQUILIBRIUM SELECTION

We have already argued that, since the ratio-
nalistics interpretation of Nash equilibrium relies
essentially on the uniqueness assumption, the fact
that a game frequently has multiple equilibria
makes the equilibrium selection problem prominent.
Nash already encountered this problem in his
study of the fixed-threat bargaining problem. In
Nash’s non-cooperative model both players simul-
taneously state their demands and if the pair of
demands is feasible then each player gets his
demand; otherwise disagreement results. Clearly,
any pair of demands that is Pareto efficient
constitutes a pure equilibrium of the game. The
following quote describes the multiplicity problem
as well as Nash'’s solution of it

“Thus the equilibrium points do not lead us
immediately to a solution of the game. But if
we discriminate between them by studying
their relative stabilities we can escape from
this troublesome non-uniqueness.

To do this we “smooth” the game to obtain a
continuous payoff function and then study
the limiting behavior of the equilibrium points
of the smoothed game as the amount of
smoothing approaches zero” ([39], pp. 131-
132).

The smoothed game is determined by a continuous
strictly positive function h, where h(d) can be inter-
preted as a probability that the demand vector d
is compatible. (It is assumed that h(d) = 1 if d is
feasible in the unperturbed problem, i.e.,, d € B,
and that h tapers off very rapidly towards zero as d
moves away from B). The smoothed game, in which
players i's payoff function is uh(a) = dh(d), “can
be thought of as representing uncertainties in the
information structure of the game, the utility scales,
etc.” ([39], p. 132). Any maximizer of the function
d,d,h(d) is an equilibrium of this perturbed game
and all these maximizers converge to the unique
maximizer of the function u,u, on B as the noise
vanishes. Furthermore, if h varies regularly, the
perturbed game will have the unique maximizer of
d,d,h(d) as its unique equilibrium. It follows that
the Nash bargaining solution is the unique nece-
ssary limit of the equilibrium points of the smoothed
games. Consequently, the original games has only
one “robust” equilibrium, which may be taken as
the solution of the game.

Building on Nash’'s ideas, and motivated by the
attempt to generalize Nash’s bargaining solution to
games with incomplete information, Harsanyi and
Selten [22] construct a coherent theory of equili-
brium selection for general games. A crucial
concept in this theory is that of risk dominance,
and the influence of Nash's ideas on the theory is
demonstrated by the following quote:

“Our artempts to define risk dominance in a
satisfactory way have been guided by the
idea that it is desirable to reproduce the result
of Nash’s cooperative bargaining theory with
fixed threats. The Nash-property is not an
unintended by-product of our theory” ([22],
p. 215).

The Nash-property that is referred to in this quote
is the property that in certain classes of games
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(such as unanimity games and 2-person 2 x 2
games) the selected equilibrium is the one for
which the product of the losses associated with
deviating from the equilibrium is largest. For
example, in the game of Figure 1, the equilibrium
(a, a) has a Nash product of 30, while the Nash-
product of (b, b) is 6. Hence, (a, a) risk-dominates
(b, b). For the special case of 2 x 2 games, Harsanyi
and Selten derive the risk-dominance relation from
a convincing set of axioms that resembles those
with which Nash justifies his bargaining solution.
For more general games, risk dominance cannot
be based on a simple comparison of Nash products
and it is not clear that Harsanyi and Selten’s
definition (which is based on the tracing procedure
and which will not be given here) is the most
appropriate one. Carlsson and Van Damme [8] com-
pare several concepts that all derive their inspiration
from Nash’'s work and that coincide with Nash's
solution for 2 x 2 games, but that yield different
outcomes outside of this class. In any case it is
clear that Nash’'s ideas figure prominently in the
theory of equilibrium selection.

EXPERIMENTAL GAMES

In the previous sections, we have documented the
influence of Nash’s ideas on the development of
normative, rationalistic game theory. This paper
would be incomplete if it would not also mention
the pioneering work of Nash, together with Kalisch,
Mitnor and Nering [25] in experimental economics.
That paper reports on a series of experiments
concerning n-person games and aims to compare
various theoretical solution concepts with the results
of actual play, i.e., it deals with the behavioral
relevance of the rationalistic theory. The authors
find mixed support for various theoretical solution
concepts and they discuss several reasons for the
discrepancy between theoretical and empirical
results. Among others, the role of personality
differences, the fact that utility need not be linear
in money and the importance of apparent fairness
considerations are mentioned. In addition, several
regularities are documented, such as framing
effects, the influence of the number of players on
the competitiveness of play, the fact that repetition
of the game may lead to more cooperative play,
and the possibility of inducing a more competitive
environment by using stooges. As documented by
the importance of the above mentioned concepts
in current experimental economics, the paper is an
important milestone in the development of descrip-
tive game theory (See [41]).

A second important contribution of Nash to the
experimental economics literature is his discussion
of the repeated prisoners’ dilemma experiment
conducted by Melvin Dresher and Merrill Flood. In
this experiment, two players played 100 repetitions
of a prisoners’ dilemma. They did not constantly
play the one-shot equilibrium, but they did not
succeed in reaching an efficient outcome either.
The experimenters view their experiment as a test
of the predictive relevance of the one-shot equili-
brium and they interpret the evidence as refuting
this hypothesis. Nash, however, argues that the
experimental design is flawed, that the repeated
game cannot be thought of as a sequence of
independent games and he suggest that the results
would have been very different if the interaction
between the trials had been removed. He conce-
des that constant repetition of the static equilibrium
is the unique equilibrium of the overall game, but
he argues that a pair of trigger strategies (“Coope-
rate as long as the other Cooperates, Defect forever
as soon as the other has Defected once”) is
nearly in equilibrium and that this pair is an exact
equilibrium in the infinitely repeated game.
Furthermore, he suggests that the situation might
actually be better represented by the latter game
“since 100 trials are so long that the Hangman's
Paradox cannot possibly be well reasoned through
on it". (Nash in [12]) Hence, he not only specifies
an appropriate design for testing static equili-
brium predictions; he also describes the essential
insight in the theory of repeated games and he
points to a specific form of bounded rationality
as an explanation for observed discrepancies
between theoretical predictions and empirical
outcomes.

CONCLUSION

Aumann [2] has forcefully argued that a game
theoretic solution concept should be judged prima-
rily by the insights that it yields in applications, by
“its sucess in establishing relationships and
providing insights into the workings of the social
processes to which it is applied” (pp. 28-29). On
this score, “Nash equilibrium is without a doubt the
most “successful” -i.e., widely used and applied-
solution concept of game theory” (p. 48). Indeed,
much of the modern literature in economics (and
related disciplines) takes the following form: A
social situation is modeled as a non-cooperative
game, the Nash equilibria of the game are com-
puted and its properties are translated into insights
into the original problem.
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The Nash bargaining solution can also be
considered a very successful solution concept since
it has also been applied frequently. Of course, its
scope is much more limited than that of the
equilibrium concept. Furthermore, because of its
more abstract nature, it is associated with ambi-
guities, which might inhibit successful applications.
Such ambiguities may be resolved by application
of the Nash program, i.e., by making explicit the
bargaining process by means of which agreements
are reached and by solving the resulting game for
its equilibria.

The problems associated with muiltiplicity of equili-
bria and with the fact that not all equilibria need
correspond to rational behavior, have hampered
successful application of the Nash program. Nash
resolved these difficulties for the special case of 2-
person bargaining games. Inspired by his ideas and
building on his techniques an important literature
dealing with these issues has been developed,
which enables the analysis and solution of more
complicated, more realistic games. Hence, the
domain of applicability of non-cooperative game
theory has been extended considerably. It is to be
expected that, as a result, our insights into the
workings of society will be enhanced as well.

KUHN

I would now like to open the floor to questions for
any of the participants including John Nash. | shall
invoke a privilege of the chair to pose a question to
him. Why did you not publish the interpretations
which are in your thesis when it was made the
basis of the article [38], in the Annals of
Mathematics?

NASH

 am afraid | can't, simply can’t answer that question.
I really don’t remember, but | do know that Tucker
changed the form of what was to be my thesis and
that the paper “Two person cooperative games”,
which might have been incorporated originaly, if it
had been allowed to, was not included. So that
became a separate publication in Econometrica,
differentiated from the rest of it, while that which
could be presented more as a mathematical paper
went into the Annals of Mathematics. So | don't know
whether it was just pruned down in style for the
Annals of Mathematics.

KUHN

It is certainly the case that the Annals of Mathe-
matics has different standards than economics
journals, and it may well have pruned down by an
editor or a reviewer there, but | think it is a great
shame, because the delay in recognizing these
interpretations has been marked. | know that Jérgen
Weibull was especially prominent in bringing forward
the mass interpretation, and | think Eric has shown
today that the reexamination, having the thesis
available, has been very fruitful for a number of
people. The meeting is now open to questions from
anyone.

WERNER GUTH
(Humboldt University of Berlin)

| just want to ask one question, because |
think John Nash proved a generic result by showing
that for every finite game there exists a Nash
equilibrium point. | found the assumptions that there
are only finitely many strategies very intuitive, very
natural, but of course to prove it you have to
assume that you can vary the mixed strategies
continously. And if | now think that having only
finitely many actions available is very natural. |
also have to assume that only finitely many options
in randomizing are available. Would you agree that
this should be viewed as an assumption for the
definition of rational players to justify that a player
can continously vary probabilities in choosing pure
actions? How do you justify it? Otherwise | would
have the conceptual philosophical problem. | think
I can live with this finitely many actions, but the
Nash theorem somehow has to rely on continuocus
variation of probabilities. Would you also see it as
an assumption of rational players, so it is more
philosophical. Thank you, finitely many actions, but
the Nash theorem somehow has to rely on
continuous variation of probabilities. Would you
also see it as an assumption of rational players,
so it is more philosophical. Thank you.

NASH

That's really a philosophical question. Mathema-
tically of course it is clear that you must have
the continuity. You can get quite odd numbers in
fact. | think if you have two players and you have
the mixed strategies, you have specific numbers
that are rational, but if you have more players you
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get algebraic numbers. So if there is some philo-
sophical basis on which that type of number cannot
be arrived at, describing a mixed strategy, then
that's out.

There is something | just wanted to say. When
| heard about the Nobel awards, and | heard that
the persons were who they were, | wondered how
they were connected. Of course | knew that
Harsanyi and Selten made some use of the
concept of equilibrium points or Nash equilibrium
points, but | wondered what else there was of
interrelation, and | started reviewing things, because
| hadn’t been following the field directly. And |
discovered this book: “A General Theory of Equili-
brium Selection in Games [23]", which | think was
published in 1988 by joint authors Harsanyi and
Selten, and then | discovered also that in relation
to this book, from opinions expressed about it, that
it is very controversial. It's very interesting, but
also somewhat controversial. And talking to some
persons | found that impression is sort of confir-
med, that there may be specific aspects of it that
are not inmmediatelly accepted. But something
can be more interesting if it is not immediatelly
accepted. So there is the problem; the possibility
that all cooperative games could really be given a
solution. This could be analogous to the Shapley
value. If it were really valid you would be able to
say, here is a game, here are the possibilities of
cooperation, binding agreements, threats, everything,
this is what it is worth to all the players. You have a
management-labor situation, you have international
politics, the question of membership in the
common market; this is what it is worth. That is,
if everything could be measured or given in terms
of utilities. So the possibility that there could be
something like that is very basic, but Shapley
would have had that very early if the Shapley
value were really the true value. But one example
in this book | studied shows how the solution
considered there in fact differs from the Shapley
value, and so it is a very interesting comparison. In
principle, experiments might distinguish between
different theories, so | think that's a very inte-
resting area. | think there will be further work. | had
better not say too much, because of course
Harsanyi and Selten will be speaking tomorrow
and | don't exactly know that they, Harsanyi and
Selten, what they will say.

NOTES
1 Actually, Nash also assumed that in a non-
cooperative game, the players will be unable to
communicate with each other. Yet, in my own view,
this would be a needlessly restrictive assumption.
For if the players cannot enter into enforceable
agreements, then their ability to communicate will
be of no real help toward a cooperative outcome.

Note that Nash equilibria seem to be the only
solution concept applying both to games in normal
form and in extensive form.

Nash here refers to his theory of non-cooperative
games based on the concept of Nash equilibria.

He does not use the term ‘“trembling-hand per-
fect” equilibria. But this is the term used by many
other game theoristis to describe this class of
Nash equilibria.

5 Nash denotes payoffs with a Roman p instead
of, as here, a Greek =.

7 Nash [36] used the mapping T : S — S defined
by T(s) = s, for
L] . :+
Sia = —10 Tl (i) g ey
1+ZBeAiniﬂ(s)

8 In the present context, a state x* = (s*, p*) is statio-
nary if s(0) = s* and p(0) = p* together imply s(t) =
s* and p(t) = p* for all t in some open time interval
containing 0.

9 An alternative version (Maynard Smith [30],
Hofbauer and Sigmund [24]) presumes u(s) > 0
and is given by g,(8) = uia(s)/ui(s)-1.

10 A population state s is dynamically stable if small
perturbations of the state do not lead the popu-
lation away, i.e., if every neighborhood V of s
contains a neighborhood U of s such that no
solution curve starting in U leaves V.
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