INGENIERIA DE CALIDAD USANDO EL DISEÑO ROBUSTO CASO R.

JAVIER MEJIA NIETO

- Profesor de Ingeniería Mecánica.

EL PROBLEMA BASICO DEL DISEÑO ROBUSTO

Diseño Robusto es la operación de escoger valores para los parámetros de productos o procesos con el fin de reducir la variación con respecto a un valor meta de las respuestas de dichos productos o procesos. Debido a que involucra la determinación de valores de parámetros, el Diseño Robusto es llamado Diseño de Parámetros por Taguchi.

La figura 1 muestra la representación de un problema simple de diseño robusto. El bloque representa el producto o proceso bajo estudio. Las respuestas del producto o proceso están determinadas por un gran número de variables. Algunas de estas variables están bajo el control del diseñador, y se denominan parámetros de control (temperatura, presión, velocidad, etc...). Las respuestas están también influenciadas por variables que son difíciles de controlar por parte del diseñador, y se denominan Variables de Ruido o Factores de Ruido. Algunos ejemplos de factores de ruido incluyen variaciones típicas de manufactura tales como la falta de uniformidad en la materia prima, la desviación de los componentes de

DETERIORACION

sus especificaciones nominales, lo mismo que la variación en el ambiente del usuario y el desgaste de las partes de los componentes en el tiempo.

En teoría, algunos de estos factores de ruido podrían ser controlados. Por ejemplo, el diseñador podría controlar las variaciones en la materia prima especificando un mayor grado de esta o componentes más costosos con tolerancias más precisas. Taguchi llama a dicha actividad Diseño de Tolerancias. Sinembargo estos esfuerzos para reducir la variación de las respuestas controlando los factores de ruido incrementan el costo de cada unidad del producto elaborado.

En contraste, el diseño robusto es una forma de reducir la variación de respuesta mediante el uso de parámetros controlables que minimicen los efectos de los factores de ruido difíciles de controlar. Este enfoque no aumenta el costo del producto. Si la aplicación del diseño robusto no reduce suficientemente la variación de respuesta, los diseñadores pueden reducir esta variación usando el diseño de tolerancias.

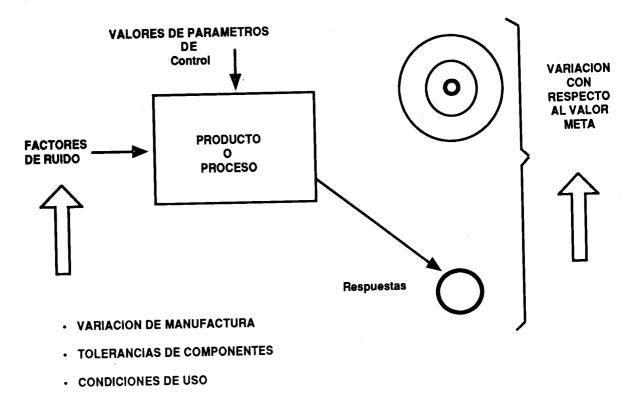


FIGURA 1

En la situación donde el conocimiento de las relaciones funcionales entre la respuesta, los parámetros de control y los factores de ruido es incompleto, se necesita realizar experimentos físicos para investigar esta relación e identificar los valores mejorados de los parámetros de control.

Cuatro Pasos en la Metodología:

del Diseño Robusto

La figura 2 muestra el flujograma de más alto nivel para la metodología del Diseño Robusto.

En el paso "Formular el problema", el ingeniero se prepara para la planeación del experimento definiendo claramente los objetivos de mejoramiento de calidad y haciendo una lista y clasificación de los factores que pueden determinar el logro de los objetivos. El experimentador hace una lista en orden

de prioridad de los efectos de los parámetros que se tomarán en cuenta luego de los resultados del experimento. El Plan del experimento se construye con la ayuda de arreglos ortogonales descritos en la referencia Bibliográfica.

Una vez realizado el experimento, los resultados se analizan para identificar las variables clave y los mejores valores para estas variables o factores. Las principales herramientas en este paso son gráficos sencillos de respuesta promedio y medidas de variabilidad para cada valor de cada parámetro para identificar los parámetros clave.

El cuarto paso, confirmación del mejoramiento, es muy importante. Este pequeño experimento de seguimiento consiste de por lo menos dos combinaciones de tests: Uno en los valores nuevos de los parámetros identificados en el paso tres y uno en los valores originales de los parámetros.

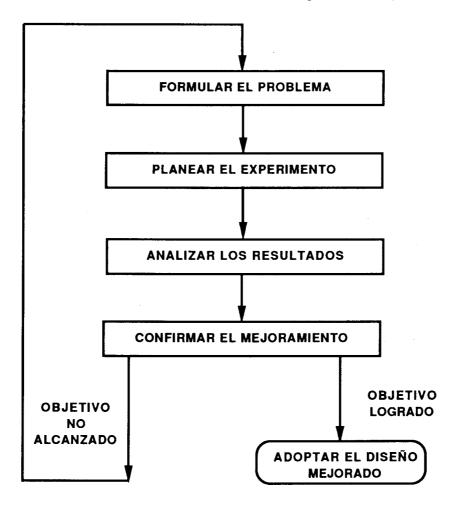
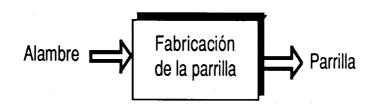


FIGURA 2

CASO R: MEJORAMIENTO DEL PRODUCTO MEDIANTE LA APLICACION DEL METODO TAGUCHI

En vista de la necesidad de la empresa R de resolver los defectos del doblado de los marcos, se decidió concentrar esfuerzos en dicho proceso obteniendo resultados satisfactorios para la empresa y para el esclarecimiento de la metodología Taguchi.

Encontrar los factores de control de la función "Doblar marcos" ha sido un logro luego de empezar observando las posibles causas de los defectos una por una. Es necesario recordar que lo básico de Taguchi es diminuir la variación de una función alrededor de un valor meta para así reducir la pérdida por reprocesos o defectos del producto.


Se muestra el cálculo de la pérdida por cada marco producido antes y después del mejoramiento logrado. El mejoramiento es la recomendación de los niveles de las variables A_1 B_1 C_1 para la ejecución del proceso de "doblar marcos", y que la empresa R ya ha implementado.

1. EL PRODUCTO

El producto con el que se va a experimentar es el marco para parrilla duplex referencia #15 de Industria R para neveras. Está hecho de alambre de diámetro nominal de 5/16".

2. EL PROCESO

La función "Doblar marcos" es la operación donde se originan los defectos, por exceso ó falta en sus dimensiones, es decir, marcos grandes o marcos pequeños (Ver figura 3).

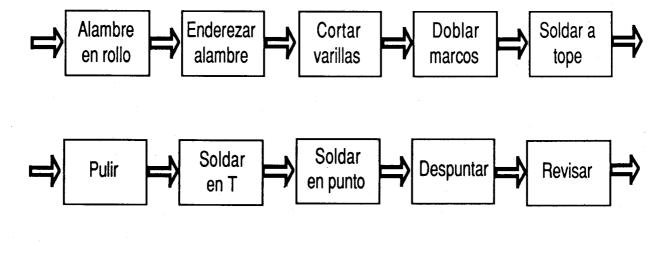


FIGURA 3

Se presentan a continuación las especificaciones bajo las cuales se considera un marco aceptable:

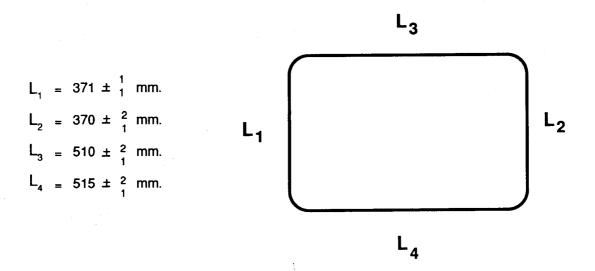


FIGURA 4 - Marco

3. PROCEDIMIENTO

La máquina donde se ejecuta el doblado es de accionamiento neumático, manejada por un operario.

Inicialmente se pensó que las posibles causas de los defectos en la operación DOBLAR eran:

- Alambre arrugado
- Alambre torcido
- Varilla larga
- Varilla corta

Se consultó con el fin de recoger ideas y se optó por rediseñar las guías de la máquina dobladora.

Además, en el laboratorio de Metrología de EAFIT, se realizó una medición de diámetro del alambre con lo cual se descartó las causas de alambre arrugado y alambre torcido.

La longitud de la varilla es: 1715 mm. Se hizo un chequeo de longitud de varilla en marzo 23/90 que permitió descartar la longitud de varilla como causa de defecto.

En marzo 9/90, se tomó una primera muestra de 20 marcos, a los cuales se les midió sus lados (todas las medidas en milímetros) así:

Marzo 9

	L,	L ₂	L ₃	L ₄
1	371	370	510	515
2	370	370	511	515
3	371	370	511	514
4	371	370	511	515
5	371	369	510	515
6	371	369	511	515
7	370	370	511	515
8	371	369	510	515
9	372	370	510	514
10	370	369	511	515
11	370	370	511	514
12	371	369	511	515
13	371	369	510	514
14	370	370	511	514
15	371	369	511	515
16	370	369	511	515
17	370	369	510	515
18	370	369	511	515
19	372	370	510	515
20	370	369	511	515

En marzo 30/90 se hizo un chequeo de las de dimensiones de los marcos, donde se observa la variación de las longitudes, así:

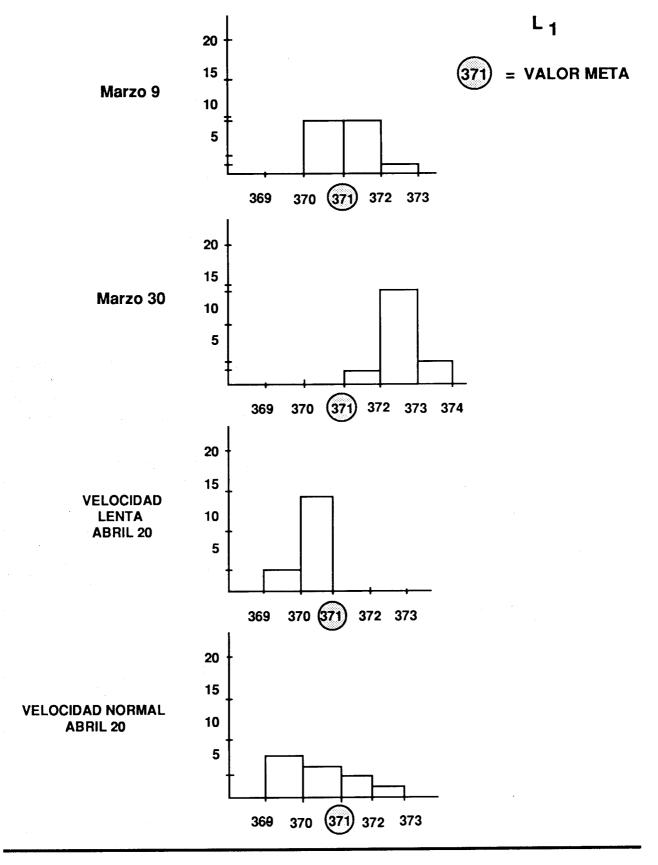
Marzo 30

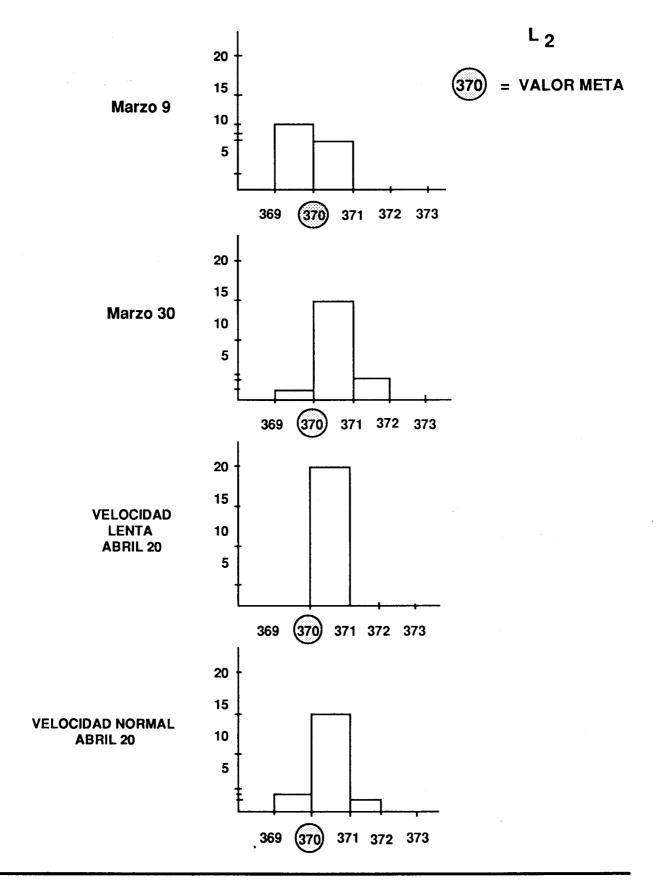
	L,	L ₂	L ₃	L ₄
1	372	370	511	515
2	373	370	510	514
3	373	370	510	514
4	372	370	510	514
5	372	370	510	514
6	373	369	510	514
7	372	370	510	515
8	372	370	510	515
9	372	370	510	514
10	372	371	510	514
11	372	370	510	515
12	372	370	510	515
13	373	370	510	515
14	372	370	510	514
15	372	370	510	515
16	371	371	511	514
17	371	370	510	515
18	372	371	510	515
19	372	371	510	515
20	372	370	510	514

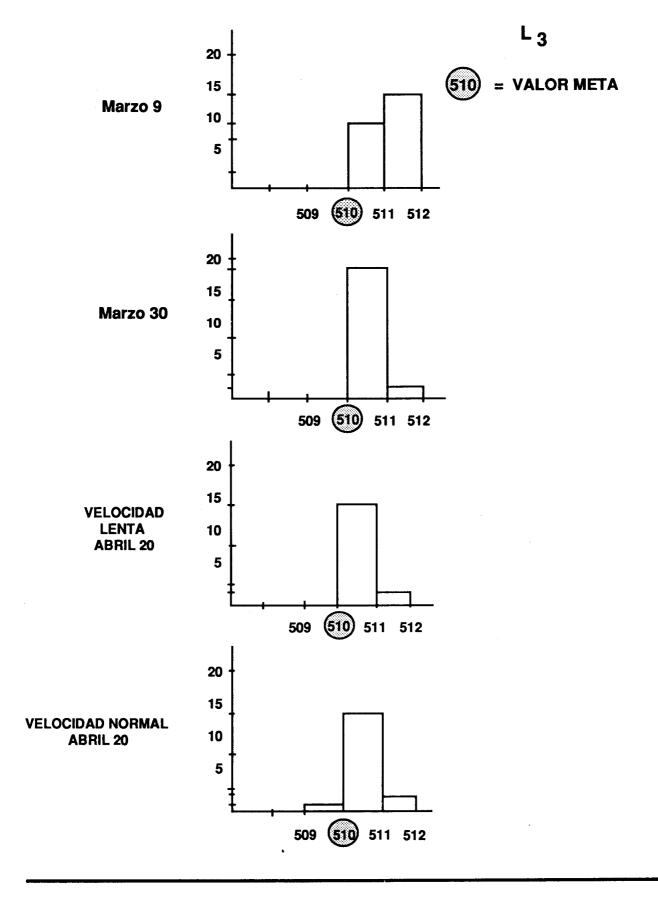
Nuevamente se recogieron ideas sobre las posibles causas de los defectos en los marcos así:

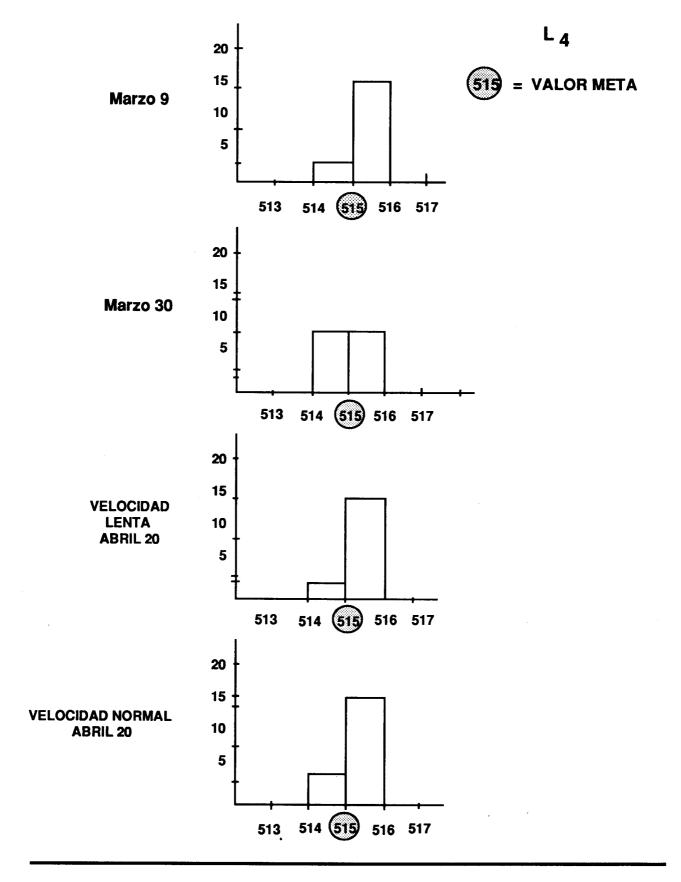
- Velocidad del operador
- Presión del aire de la máquina
- Velocidad de giro del doblador

En abril 20/90, se le pidió al operador de la máquina dobladora que realizara la operación a una velocidad lenta con el fin de verificar la influencia del factor humano en la calidad de los marcos y se obtuvo lo siguiente:


Velocidad lenta del operador


	L ₁	L ₂	L ₃	L ₄
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	370 370 370 369 370 370 370 370 370 370 370 370 370 370	370 370 370 370 370 370 370 370 370 370	510 510 510 510 510 510 510 510 510 510	514 514 515 515 515 515 515 515 515 515
18 19 20	370 369 369	370 370 370	510 511 511	515 515 515


Velocidad normal del operador


	L,	L ₂	L ₃	L ₄
1	370	370	510	515
2	371	370	510	515
3	372	369	510	515
4	371	370	509	515
5	371	369	510	515
6	370	370	510	515
7	371	370	510	514
8	369	370	510	515
9	372	369	510	515
10	370	370	510	515
11 .	371	369	510	515
12	369	370	511	515
13	369	370	511	515
14	369	371	510	515
15	368	370	510	515
16	369	371	511	514
17	369 370	371	510 510	515 514
18	370	370 370	510 511	515
19	370			
20	370	370	510	515

HISTOGRAMAS DE FRECUENCIAS

4. DISEÑO DE EXPERIMENTOS

El procedimiento a seguir es utilizar el arreglo ortogonal L_4 (23)

FACTORES NIVELES

1. Velocidad del operador

(1) lenta. (2) normal

2. Presión del aire

(1) 80 psi, (2)60 psi

3. Velocidad de giro

(1) alta, (2) baja

La velocidad de giro se refiere al elemento de la máquina que empuja la varilla en una trayectoria circular para realizar el doblado.

Para nuestro caso, el objetivo es disminuir la variación de las longitudes de los lados del marco, donde los valores meta son:

 $L_1 = 371$

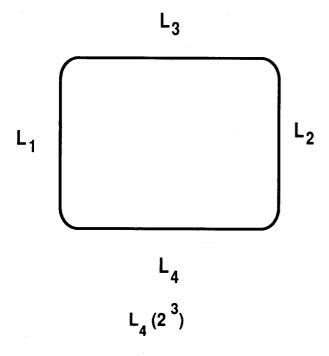
 $L_2 = 370$

 $L_{a} = 510$

 $L_{\star} = 515$

De acuerdo con el arreglo ortogonal L_4 (2)³, se llevaron a cabo los experimentos con los siguientes resultados, teniendo en cuenta que:

A, \rightarrow Velocidad lenta del operador.


 $A_2 \rightarrow Velocidad normal del operador.$

B₁ → 80 psi (Presión alta del aire que acciona la dobladora).

 ${\bf B_2} \longrightarrow 60 \, {\rm psi} \, ({\rm Presion} \, {\rm baja} \, {\rm del} \, {\rm aire} \, {\rm que} \, \, {\rm acciona} \, 100 \, {\rm psi} \, ({\rm presion} \, {\rm baja} \, {\rm del} \, {\rm aire} \, {\rm que} \, \, {\rm acciona} \, 100 \, {\rm psi} \, ({\rm presion} \, {\rm baja} \, {\rm del} \, {\rm aire} \, {\rm que} \, \, {\rm acciona} \, 100 \, {\rm psi} \, ({\rm presion} \, {\rm baja} \, {\rm del} \, {\rm aire} \, {\rm que} \, \, {\rm acciona} \, 100 \, {\rm psi} \, ({\rm presion} \, {\rm baja} \, {\rm del} \, {\rm aire} \, {\rm que} \, \, {\rm acciona} \, 100 \, {\rm psi} \, ({\rm presion} \, {\rm baja} \, {\rm del} \, {\rm aire} \, {\rm que} \, \, {\rm acciona} \, 100 \, {\rm psi} \, ({\rm presion} \, {\rm baja} \, {\rm del} \, {\rm aire} \, {\rm que} \, \, {\rm acciona} \, 100 \, {\rm psi} \, ({\rm presion} \, {\rm baja} \, {\rm del} \, {\rm aire} \, {\rm que} \, \, {\rm acciona} \, 100 \, {\rm psi} \, ({\rm presion} \, {\rm psi} \, {\rm que} \, {\rm acciona} \, {\rm que} \, {\rm que} \, {\rm acciona} \, {\rm que} \, {\rm q$

C₁ → Velocidad alta de giro del mecanismo doblador.

C₂ → Velocidad baja de giro del mecanismo doblador.

Factores # Experimentos	1	2	3
1	1	1	1
2	1	2	2
3	2	1.	2
4	2	2	.1

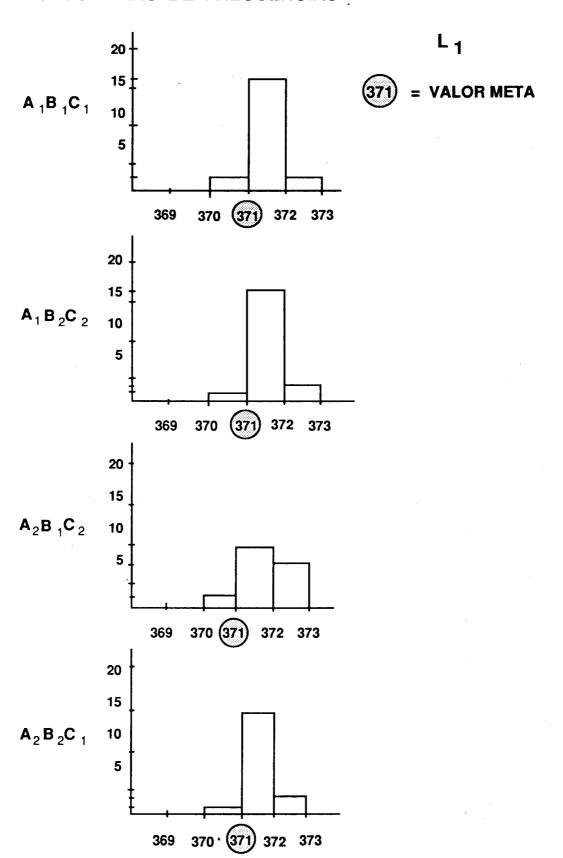
Factores # Experi- mentos	A	В	С
1	A ₁	B ₁	C ₁
2	A 1	B ₂	C 2
3	A ₂	B ₁	C ₂
4	A 2	B ₂	C 1

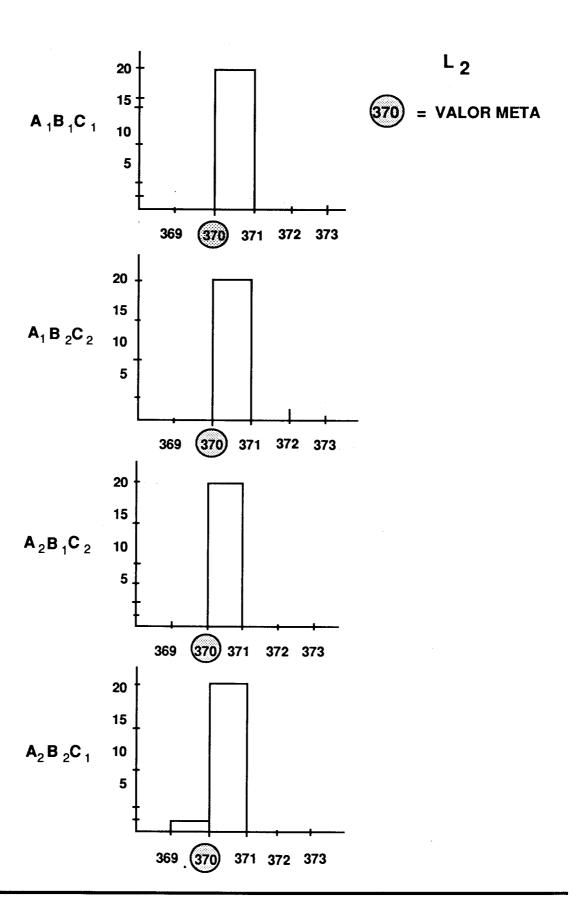
Experimento # 1 - A₁ B₁ C₁

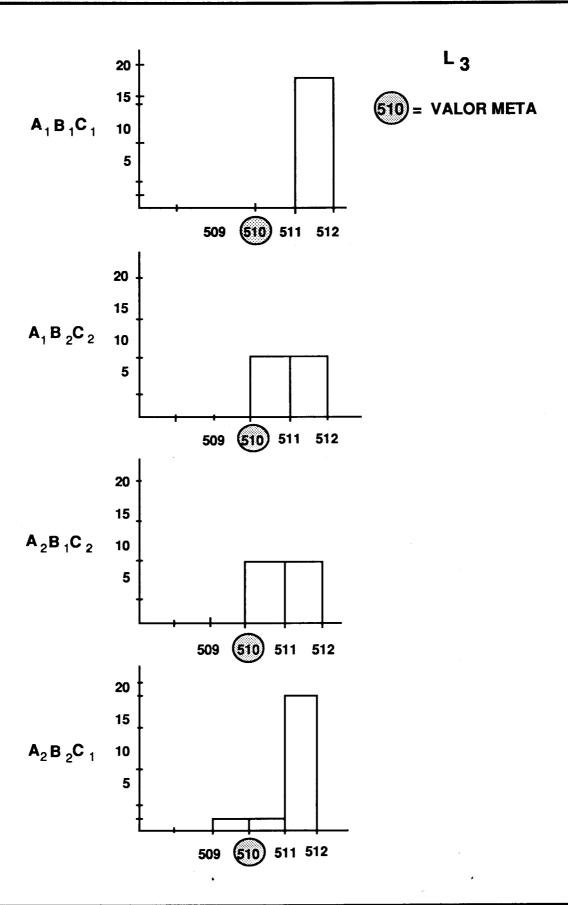
	L,	L ₂	L ₃	L ₄
1	371	370	511	514
2	371	370	511	515
3	372	370	511	514
4	372	370	511	514
5	371	370	511	515
6	371	370	511	514
،7	370	370	511	515
8	371	370	511	515
9	371	370	511	514
10	371	370	511	515
11	371	370	511	515
12	371	370	511	515
13	370	370	511	515
14	371	370	511	515
15	371	370	511	515
16	371	370	511	515
17	371	370	511	514
18	371	370	511	515
19	371	370	511	515
20	371	370	511	515

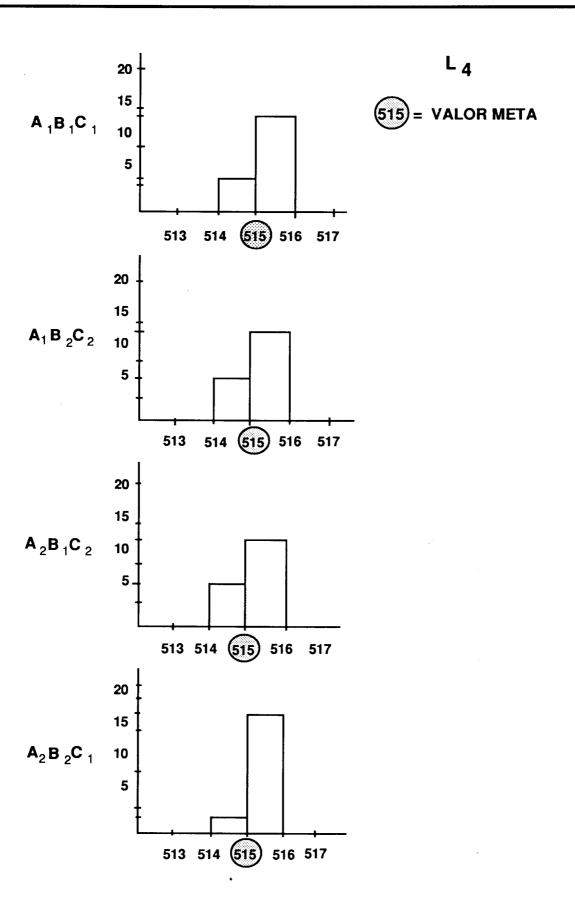
Experimento #3 - A₂ B₁ C₂

	L	L ₂	L ₃	L ₄
1	371	370	510	515
2	372	370	510	514
3	372	370	510	514
4	372	370	510	515
5	372	370	510	514
6	372	370	511	515
7	371	370	511	514
8	371	370	510	515
9	372	370	511	514
10	370	370	510	515
11	372	370	510	515
12	371	370	511	515
13	371	370	511	515
14	371	370	511	514
15	370	370	511	515
16	371	370	510	515
17	371	370	511	515
18	371	370	511	515
19	371	370	510	514
20	370	370	511	515


Experimento # 2 - A₁ B₂ C₂


	L,	L2	L ₃	L ₄
1	371	370	511	515
2	371	370	511	515
3	371	370	511	515
4	371	370	511	515
5	371	370	510	514
6	371	370	510	515
7	[.] 372	370	510	515
8	371	370	510	514
9	371	370	511	515
10	371	370	510	514
11	371	370	510	514
12	371	370	511	515
13	372	370	510	514
14	371	370	511	514
15	371	370	510	515
16	371	370	511	514
17	370	370	511	515
18	371	370	510	515
19	371	370	510	515
20	371	370	511	515


Experimento # 4 - A₂ B₂ C₁


	L,	L ₂	L ₃	L ₄
1	372	370	511	515
2	371	370	511	515
3	371	370	511	515
4	371	370	511	515
5	371	370	511	515
6	371	370	511	515
7	371	370	511	515
8	371	370	511	515
9	370	370	511	515
10	371	370	511	515
11	373	370	509	515
12	371	370	511	515
13	372	370	511	514
14	371	370	511	515
15	371	370	511	514
16	372	370	511	514
17	371	369	511	515
18	371	370	511	515
19	371	370	511	515
20	371	370	510	515

HISTOGRAMAS DE FRECUENCIAS

5. TABLAS DE RESULTADOS Y RECOMENDACION

Factores	Α	В	С	Promedios de los resultados			
Experimentos				L1	L2	L3	L4
1	1	1	1	371	370	511	514.7
2	1	2	2	371.05	370	510.5	514.65
3	2	1	2	371.2	370	510.5	514.65
4	2	2	1	371.2	370	510.85	514.85

TABLA 1

TABLA DE RESPUESTA PROMEDIO PARA CADA NIVEL DE CADA FACTOR								
FACTOR	ES	L1	L2	L3	L4			
Veloc. Oper. Lenta	A,	371.025	370	510.75	514.675			
Veloc. Oper. Normal	$A_{\!\scriptscriptstyle 2}$	371.2	370	510.675	514.75			
80 psi	В,	371.1	370	510.75	514.675			
60 psi	B_{z}	371.125	370	510.675	514.75			
Veloc. Giro alta	C,	371.1	370	510.925	514.775			
Veloc. Giro Baja	C ₂	371.125	370	510.5	514.65			

TABLA 2

	ABLA DE CO		
	Α	В	С
Nivel 1	371.025	371.1	371.1
Nivel 2	371.2	371.125	371.125
Diferencia	175	025	025

TABLA 3

	BLA DE CO TOS PRINO		
	Α	В	С
Nivel 1	370	370	370
Nivel 2	370	370	370
Diferencia	0	. 0	0

TABLA 4

	ABLA DE C CTOS PRIN		
	A	В	С
Nivel 1	510.75	510.75	510.925
Nivel 2	510.675	510.675	510.5
Diferencia	.075	.075	.425

TABLA 5

Recomendación: $A_1B_1C_1$ considerando L_1 \rightarrow Dimensión Crítica .

*: L_1 es la dimensión que se chequea durante el proceso para determinar si el marco está bueno. La recomendación se obtiene de la tabla 3 escogiendo el nivel cuyo valor está más cercano al valor meta de L_1 .

6. EXPERIMENTO CONFIRMATORIO

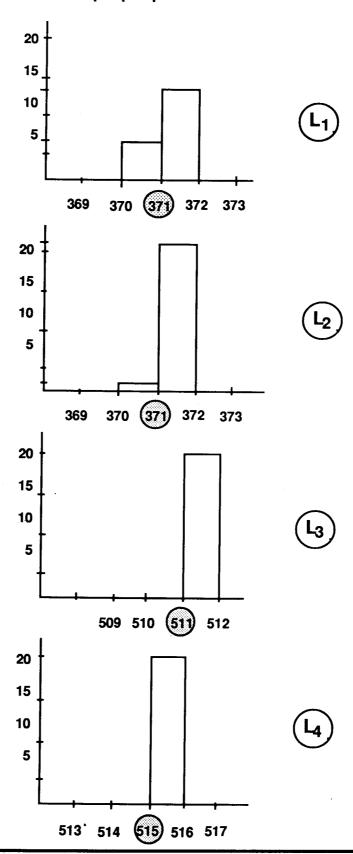
Los valores meta se cambiaron debido a que el proceso se vio afectado por la variable humana (procedimiento del operador) y hubo que aumentar

TABLA DE COMPARACION DE EFECTOS PRINCIPALES PARA: L4 Α C В Nivel 1 514.675 514.675 514.775 Nivel 2 514.75 514.75 514.65 Diferencia - .075 - .075 .125

TABLA 6

la longitud de la varilla a 1717 mm. para mejorar la uniformidad del marco.

Entonces los nuevos valores meta son:


$$L_1 = 371$$

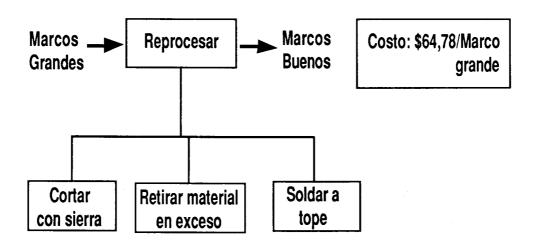
 $L_2 = 371$
 $L_3 = 511$
 $L_4 = 515$

Sinembargo la recomendación para el proceso sigue siendo válida: A1B,C,.

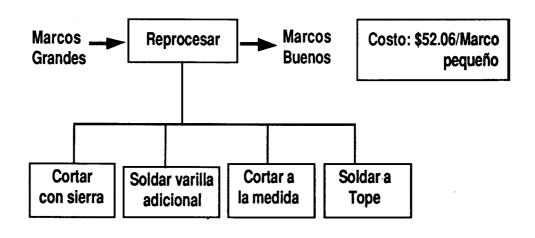
Experimento Confirmatorio - A, B, C,

	L,	L ₂	L ₃	L ₄
1	371	371	511	515
2	370	371	511	515
3	370	371	511	515
4	371	371	511	515
5	370	371	511	515
6	371	371	511	515
7	370	371	511	515
8	371	371	511	515
9	371	371	511	515
10	370	371	511	515
11	370	371	511	515
12	371	371	511	515
13	371	371	511	515
14	370	371	511	515
15	371	371	511	515
16	371	371	511	515
17	371	371	511	515
18	371	371	511	515
19	371	370	511	515
20	371	371	511	515

HISTOGRAMAS DE FRECUENCIAS DEL EXPERIMENTO A B C CONFIRMATORIO


7. CUANTIFICACION DE LA PERDIDA Y LOGROS - CASO R

Durante 11 días del mes de marzo se tomaron datos del número de marcos defectuosos grandes y


pequeños, y del número de marcos buenos de la referencia #15. Posteriormente a la implementación de los resultados de los experimentos se tomaron datos de 11 días del mes de Junio.

	# Días	Marcos Grandes	Marcos Pequeños	Marcos Buenos	Marcos Producidos
	11 (Marzo)	175	8	11501	11684
Mejoramiento Logrado	11 (Junio)	0	1	14143	14144

El costo de recuperación o pérdida por cada marco producido en el mes de marzo se calcula teniendo en cuenta que "marcos grandes" se reprocesan así:

"Marcos pequeños" se reprocesan así:

La pérdida por cada marco producido en marzo es:

Costo Reproceso Marcos Grandes + Costo Reproceso Marcos Pequeños

Marcos producidos

175 Marcos Grandes X \$64.78/Marcos Grandes + 8 Marcos Pequeños X\$52.06/Marcos pequeños

11684 Marcos Producidos

Perdida = \$1.00 / Marco Producido en Marzo

La pérdida por cada marco producido en Junio, luego de la mejora adoptada es:

0 + 3 Marcos pequeños X \$52.06 /Marco pequeño
= \$ 0.01/Marco Producido
14144 Marcos Producidos

|--|

8. CONCLUSIONES SOBRE EL METODO TAGUCHI

- La aplicación de la Metdología Taguchi promueve el interés por la calidad en la empresa donde se aplica.
- Requiere de instrumentos de medición confiables para cada una de las variables que intervienen en los procesos lo cual implica que la Universidad EAFIT adecúe instrumental que pueda ser trasladado a fábricas donde se aplique la Metodología Taguchi. Es el caso de: manómetros, cronómetros, calibradores, etc.
- 3. Es un procedimiento sencillo luego de ser entendido por los Ingenieros de Planta.
- Exige produndizar en los procesos y en los fenómenos físicos llegándose a una mejor comprensión global de las causas de los defectos en la producción.
- Tiene en cuenta tanto las variables técnicas como las humanas (Caso R) convirtiéndose en una herramienta adecuada para la Calidad total.

- El método Taguchi induce a la automatización de los procesos mediante el rediseño de dispositivos de control de las variables involucradas.
- En el Caso R indujo a rediseñar los topes de la máquina dobladora adaptándoles imanes para disminuir el efecto de la variable humana en la operación "Doblar Marcos".

9. BIBLIOGRAFIA

- SHOEMAKER ANNE C., and RAGHU N. KACKER. "A Methodology For Planning Experiments in Robust Product and Process Design". Quality and Reliability Engineering International, Vol. 4, 95-103. (1988).
- ITESM, Programa TAGUCHI QFD. Centro de Calidad "Introducción a la Ingeniería de la Calidad", Manual del Curso, Junio 1989. 316 pp.
- MEJIA NIETO JAVIER. "Optimización de Procesos de Manufactura y Diseño Optimo de Productos en una Empresa Metalmecánica mediante el Método Taguchi". Proyecto de Investigación, EAFIT, julio 1990.