Multistage game models and delay supergames

Main Article Content

Reinhard Selten

Keywords

Resumen

The order of stages in a multistage game is often interpreted by looking at earlier stages as involving more long term decisions. For the purpose of making this interpretation precise, the notion of a delay supergame of a bounded multistage game is introduced. A multistage game is bounded if the length of play has an upper bound. A delay supergame is played over many periods. Decisions on all stages are made simultaneously, but with different delays until they become effective. The earlier the stage the longer the delay.

A subgame perfect equilibrium of a bounded multistage game generates a subgame perfect equilibrium in every one of its delay supergames. This is the first main conclusion of the paper. A subgame perfect equilibrium set is a set of subgame perfect equilibria all of which yield the same payoffs, not only in the game as a whole, but also in each of its subgames. The second main conclusion concerns multistage games with a unique subgame perfect equilibrium set and their delay supergames which are bounded in the sense that the number of periods is finite. If a bounded multistage game has a unique subgame perfect equilibrium set, then the same is true for every one of its bounded delay supergames.

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 260 | PDF Downloads 311