Join the conversation. Follow OUP Religion for the latest religion news and insights.

Main Article Content

Javier Pantoja-Robayo Kelly Maradey Angarita Alfredo Trespalacios Carrasquilla

Abstract

One of the strengths of futures markets is the elimination of counterparty risk, but to accomplish this, it is important to consider the financial guarantees the clearing house requires from market participants. These margins must hedge the risk related to extreme variations in the product price, but they should not be excessive to avoid limiting the number of participants in the market. In this paper we propose a new methodology to provide appropriate margins in the electric power futures market, and we present an application for the Colombian market. We conduct a Monte Carlo simulation to assess the daily changes of the futures price and estimate measures of risk for different scenarios for “El Niño” weather conditions, holding periods, and expiration times. We find that the new methodology substantially modifies required financial guarantee levels compared to the methodology currently used to calculate margins.

Downloads

Download data is not yet available.

Abstract

One of the strengths of futures markets is the elimination of counterparty risk, but to accomplish this, it is important to consider the financial guarantees the clearing house requires from market participants. These margins must hedge the risk related to extreme variations in the product price, but they should not be excessive to avoid limiting the number of participants in the market. In this paper we propose a new methodology to provide appropriate margins in the electric power futures market, and we present an application for the Colombian market. We conduct a Monte Carlo simulation to assess the daily changes of the futures price and estimate measures of risk for different scenarios for “El Niño” weather conditions, holding periods, and expiration times. We find that the new methodology substantially modifies required financial guarantee levels compared to the methodology currently used to calculate margins.

1. Introducción

Los mercados eléctricos presentan características diferentes a los mercados financieros, tal como lo explica Pilipovic (2007 ). Trespalacios, Rendón, & Pantoja (2012 ) plantean que quienes transan en el mercado de energía eléctrica están expuestos a riesgos que requieren un tratamiento diferente. Pantoja (2012) expone que la energía es un bien primario no almacenable, lo que no permite mantener un inventario como cobertura natural ante las fluctuaciones del precio spot y, por tanto, los agentes que transan en este mercado se exponen a riesgo de precio y de cantidad.

Luego de la liberación de los mercados a nivel mundial en la década de los 90, se utilizaron los contratos de largo plazo para el aseguramiento de los precios de compra y venta. La cobertura de estos riesgos se ha realizado, tradicionalmente, a través de la operación de contratos bilaterales, que como mencionan García, Gaviria, & Salazar (2011 ) generalmente son de tipo pague lo contratado y pague lo demandado. Estos contratos bilaterales, también identificados como contratos forward, son difíciles de deshacer y presentan riesgo crediticio, que puede incluso llevar a la discriminación de agentes del mercado.

Los contratos de futuros son una alternativa a los contratos bilaterales para acceder a cobertura financiera que, por su naturaleza estandarizada, forma de liquidación y presencia de una cámara de riesgo central de contraparte (CRCC), elimina el riesgo de crédito y brinda la posibilidad de aumentar la masa de posibles negociadores. El adecuado manejo de este riesgo y del nivel de liquidez del mercado dependerá de la selección del nivel de garantías realizado por la CRCC. La CRCC tiene la misión de compensar y actuar como contraparte central de las operaciones con el propósito de reducir o eliminar el riesgo de incumplimiento de las obligaciones derivadas de las mismas. Los modelos de estimación de garantías o márgenes utilizados por las cámaras tienen como objetivo cubrir posibles pérdidas derivadas de movimientos extremos en los precios de los activos subyacentes en un periodo específico de tiempo, tomando en cuenta la disminución del riesgo ocasionada por la diversificación, es decir, considerando las correlaciones entre los distintos grupos productos del portafolio.

Las CRCC manejan varios tipos de garantías, las garantías ordinarias cubren en primera instancia el incumplimiento de un miembro y se subdividen en garantías iniciales y garantías diarias; y las garantías extraordinarias son requeridas a los miembros y terceros debido a circunstancias particulares como volatilidad, riesgo de las posiciones abiertas, normatividad y límites. El objetivo del procedimiento del cálculo de garantía diaria es estimar la pérdida máxima generada a nivel de cuenta por la toma de posiciones en los contratos que compensa y liquida la Cámara. Para el caso del mercado colombiano de futuros sobre energía eléctrica, la pérdida máxima está determinada por el tamaño de la fluctuación máxima o volatilidad del precio del subyacente en un horizonte de tiempo de dos días, el número de escenarios en los cuales se subdivide el análisis de dicha fluctuación y las compensaciones entre posiciones contrarias para el conjunto de vencimientos de aquellos contratos que comparten las mismas condiciones del activo subyacente.

Así, es necesario anticipar los posibles cambios que puedan presentarse en el mercado de futuros para los diferentes productos que están abiertos, generalmente, las cámaras utilizan el precio del spot para analizar las posibles fluctuaciones asumiendo que la distribución de probabilidad de los cambios del spot es un estimador adecuado de la distribución de probabilidad de los cambios del precio de los futuros. Existen diversos estudios sobre la relación entre el mercado de futuros y el mercado de contado, realizados con el fin de determinar básicamente: la incidencia de un mercado en otro y el poder predictivo de los movimientos en los precios de un mercado en el otro.

Stoll y Whaley (1990 ) plantean algunas implicaciones en la relación entre el mercado de futuros de un índice y el mercado de contado bajo los supuestos de mercados eficientes: i) la varianza del mercado de contado es igual a la varianza del mercado de futuros, ii) los rendimientos contemporáneos de los precios del mercado de contado y de futuros están correlacionados perfecta y positivamente. De esta manera, se considera que las distribuciones de probabilidad del precio spot y del precio del futuro son iguales y por tanto la serie de precios del spot entrega información adecuada para la estimación de garantías del mercado de futuros. En el desarrollo de este trabajo se mostrará como este supuesto no se cumple en el mercado de energía eléctrica.

Con respecto a los modelos que son utilizados por las cámaras de riesgo para definir los niveles de garantías, Knott y Mills (2002 ) plantean algunos cuestionamientos como la insuficiente profundización en la forma que sigue la distribución de los cambios en los precios haciendo supuestos gruesos, como el supuesto de normalidad. Por un lado, la presencia de asimetría significativa en la serie de rendimientos implicaría la necesidad de exigir depósitos de garantía distintos tanto a comprador como a vendedor del contrato de futuro, por otro, la presencia de series leptocúrticas alertaría a la Cámara de un incremento en la probabilidad de que se den movimientos extremos en los precios que lleven a un agotamiento de los depósitos exigidos.

En este trabajo se propone una metodología alternativa, diferente de la utilizada tradicionalmente por la Cámara, para la estimación de las garantías del mercado de futuros en energía eléctrica, buscando a través de la implementación de un modelo CVaR cuantificar la magnitud esperada de las pérdidas en que se podría incurrir en caso de superarse el VaR y, atendiendo los cuestionamientos en cuanto a la distribución de los cambios en los precios que, incrementaría la probabilidad de movimientos extremos, y por ende impactaría el requerimiento de garantías exigidas. Como caso de estudio se presenta el mercado colombiano. Para desarrollar este objetivo se realiza simulación de Montecarlo para evaluar las variaciones diarias que puede tener el precio de los futuros teniendo en cuenta características particulares del mercado de energía eléctrica, como lo son el impacto de fenómenos climáticos, la prima de riesgo y la reversión a la media. También, se estiman las posibles pérdidas derivadas de movimientos extremos en los precios del contrato futuro en un periodo específico de tiempo y se presenta propuesta de niveles de garantía para una cobertura de 5 días, teniendo en cuenta que dicho depósito deberá mantener un equilibrio entre unos costos de oportunidad bajos para el usuario de los contratos de futuro y una elevada protección de la cámara ante movimientos adversos de los precios, como es el caso de un Fenómeno de Niño.

En la segunda sección de este trabajo se presenta una descripción de los mercados de energía eléctrica, así como las diferencias entre estos mercados y los mercados financieros. En la tercera sección se hace una descripción de la metodología con la que se abordó la investigación. En la sección cuatro se describe el movimiento del precio forward en mercados financieros y su relación con el precio spot, se presenta el modelo matemático del precio de contratos forward para mercados eléctricos y su ecuación de recurrencia. En la sección cinco se presentan los indicadores de riesgo utilizados y la sensibilidad a los parámetros de modelación. En la sección seis aparecen los resultados obtenidos para el mercado colombiano, para luego plantear el esquema de garantías propuesto para dicho mercado. Finalmente, en el capítulo siete se presentan las conclusiones de la investigación.

2. Mercado de energía

Pilipovic (2007 ) plantea razones por las que el mercado de energía se diferencia de los mercados financieros, en primer lugar, el mercado de energía responde a la interacción dinámica entre la generación, almacenamiento, transmisión, uso, compra y venta de un producto con entrega real, que genera un comportamiento más complejo en el precio evidenciado por la presencia de saltos, fuerte reversión a la media, volatilidades mayores, estacionalidad y existencia de un rendimiento de conveniencia o costo de oportunidad por mantener la producción parada o en espera energía disponible. El mercado de energía eléctrica responde diferente a los ciclos económicos y fundamentales de la oferta y la demanda, presenta una reversión a la media más fuerte que corresponde a que tan rápido la oferta de energía puede reaccionar a “eventos” del mercado como guerras o sequias.

Adicionalmente, este mercado presenta restricciones en la capacidad de producción y almacenamiento, que generan volatilidades superiores en el spot, sin embargo, en el precio del futuro la volatilidad disminuye a mayores vencimientos debido a la expectativa de que la oferta y la demanda se balanceen en largo plazo. Esto genera lo que se conoce como Split Personallity y hace referencia a que el tramo corto de la curva forward refleja la energía actualmente almacenada, mientras que la parte larga refleja las expectativas de estabilidad del sistema. Fenómenos climáticos como El Niño, elevan además los costos de producción de la energía ya que se demanda más producción térmica. En últimas el mercado de energía está influenciado por condiciones de corto plazo como el almacenamiento, y de largo plazo como la oferta potencial futura de energía.

Pantoja (2012 ), en su estudio Modelling Risk for Electric Power Markets, encontró evidencia de que los agentes del mercado de energía pagan una prima que depende de la capacidad futura de producción de energía eléctrica, aun en condiciones debidas a fenómenos climáticos como El Niño. Esta prima está definida por las expectativas de los agentes sobre la generación futura y es un reflejo del grado de aversión al riesgo y representa el propósito de asegurar un precio sobre una cantidad incierta de electricidad a futuro.

Cabe mencionar que el principio de no arbitraje es cuestionable en el mercado de futuros sobre energía eléctrica. En condiciones normales, sería indiferente: entrar en un contrato a futuro con vencimiento en T o comprar hoy el activo y mantenerlo hasta T, dado que ambas situaciones tienen el mismo payoff en T y podría estimarse el precio del futuro a partir del precio spot llevándolo a valor futuro con una tasa que corresponde al costo de tenencia - costo of carry . Sin embargo, en el mercado de energía la oferta está limitada por el volumen y existen restricciones de almacenamiento y transporte, por lo que ambas situaciones no tendrían el mismo payoff en T, caso en el que el precio del futuro sería equivalente al precio spot ajustado por una prima de riesgo.

En este trabajo se evalúa si los depósitos de garantía exigidos en el mercado de futuros de energía eléctrica en Colombia son o no excesivos, para lo que se estiman las posibles pérdidas derivadas de movimientos extremos en los precios del contrato futuro en un periodo específico de tiempo, teniendo en cuenta características particulares del mercado de energía eléctrica, como lo son el impacto de fenómenos climáticos, la prima de riesgo y la reversión a la media. Dicho depósito deberá mantener un equilibrio entre unos costos de oportunidad bajos para el usuario de los contratos de futuro y una elevada protección de la cámara ante movimientos adversos de los precios.

3. Metodología

La metodología seguida para evaluar si los depósitos de garantía exigidos en el mercado de futuros de energía eléctrica en Colombia son o no excesivos, consta de las siguientes etapas:

Primera, simulación del movimiento del precio a plazo de la energía eléctrica mediante el siguiente modelo, que incorpora características como la reversión a la media, la prima de riesgo y el fenómeno del Niño:

dF t,T = - αk.e- k(T-t) dt + σ.e -k(T-t) dwt

En donde,

a es la prima de riesgo de contratos de largo plazo, Long-Term Forward Risk Premium .

K es la velocidad de reversión a la media, k > 0.

σ es la volatilidad del precio spot de la energía eléctrica. dw es el diferencial de un movimiento browniano.

Segunda, estimación de la pérdida máxima potencial derivada de movimientos extremos en el precio forward de la energía eléctrica en un periodo específico de tiempo. Se estiman diferentes modelos para medir el riesgo, estos son: Valor en Riesgo (VaR), Valor en Riesgo Condicional (CVaR). El objetivo es medir la volatilidad a la que estaría expuesta la Cámara de Riesgo con un nivel de confianza del 99%, y sobre la cual debería basarse para estimar las garantías exigidas a los agentes que participan en el mercado.

Tercera, validación de que la garantía exigida en el mercado de futuros sobre energía eléctrica “garantice” las posibles pérdidas dado el riesgo de mercado al que se expone el agente.

4. Precio spot y futuro

Es ampliamente aceptado en la literatura que el precio de activos financieros como acciones, se mueve de acuerdo con un Movimiento Browniano Geométrico (MBG). Bachelier (1900 ) en su tesis doctoral, Teoría de la Especulación, introduce el movimiento browniano para modelar precios de activos bursátiles y valorar algunas opciones cotizadas en aquella época en la bolsa de valores. Black, Scholes y Merton (1973 ) resolvieron el problema de valoración de una opción europea bajo el supuesto de que los precios de las acciones evolucionan de acuerdo a un Movimiento Browniano. Si se asume que el precio spot St de un activo financiero se mueve siguiendo un MBG la ecuación diferencial estocástica que gobierna su movimiento es la que se presenta a continuación, donde dWt corresponde al diferencial de un proceso de Wiener, u y σ son constantes y representan los parámetros de tendencia y volatilidad respectivamente.

(Hull, 2008) muestra cómo el precio de los contratos de futuros transados en el momento t con vencimiento en T, de productos sobre los que no existe posibilidad de arbitraje y son almacenables, asumiendo tasa de interés constante, están dados por la relación:

Se puede demostrar aplicando lema de Itô, como lo hace Venegas (2008), que la ecuación diferencial estocástica que gobierna el precio de los contratos de futuro para activos financieros que cumplen con el supuesto del MBG es:

Que corresponde, así como en el caso del spot, con un movimiento browniano geométrico con la misma volatilidad del activo subyacente, aunque que con un parámetro de tendencia menos marcado siempre que la tasa de interés libre de riesgo sea positiva. Así, si se desea hacer estimaciones acerca de la volatilidad de los precios de contratos futuros sobre activos como las acciones, puede ser indiferente analizar la volatilidad de estos o la del precio subyacente, contrario a lo que ocurre en la energía eléctrica. El precio spot de mercados eléctricos, presenta entre otras características, patrones de reversión a la media y estacionalidad. Estas características no pueden ser captadas por la dinámica de un movimiento browniano geométrico.

Geman & Roncoroni (2003 ) proponen una serie de procesos para modelar el precio spot incluyendo parámetros de saltos y calibran dicho modelo en los tres mercados energéticos más importantes de Estados Unidos. Para este trabajo se considera el modelo de precio spot propuesto por Lucia & Schwartz, (2002 ), el cual ha sido calibrado para el mercado colombiano por Trespalacios, Rendón, & Pantoja (2012 ) y Maya & Gil (2008 ) que igualmente logra describir la dinámica de otros mercados a nivel internacional. Así, el precio spot estará dado por la siguiente ecuación, donde kappa corresponde a la velocidad de reversión a la media, sigma la volatilidad instantánea del precio y f(t) corresponde a una función determinística del precio donde se incluyen, entre otros, la estacionalidad del precio.

Si se considera la información disponible hasta t, el valor esperado del precio spot en T, está dado por la siguiente expresión:

Considerando que el precio de los contratos con entrega a futuro corresponde al valor esperado del precio spot ajustado por riesgo (seleccionando una medida neutral al riesgo), ( Lucia & Schwartz, 2002 ) muestran cómo el precio de entrega del contrato forward de energía eléctrica con vencimiento en T, negociado en t corresponde con la expresión:

Donde a corresponde a la prima de riesgo de largo plazo del mercado. Para identificar la prima de riesgo que el mercado está cobrando (FRP por las siglas en inglés de Forward Risk Premium ), basta con tomar la diferencia entre las dos ecuaciones anteriores. Encontrándose que la FRP tiene un valor máximo de alfa cuando el período al vencimiento tiende al infinito, esto es cuando se presenta que (T-t)-> ∞ y que es cero cuando T=t.

A partir de la relación (7) y aplicando Lemma de Itô, (Trespalacios, Rendón, & Pantoja, 2012 ) encuentran que el movimiento del precio forward de energía eléctrica, es gobernado por la siguiente ecuación diferencial estocástica:

Cuya expresión no tiene la misma forma que la ecuación diferencial propuesta para el precio spot. En la componente estocástica, se aprecia cómo la volatilidad instantánea del precio spot es constante σ, mientras que para el precio del contrato forward cambia con el tiempo σ· e -k (T-t) . En la Gráfica 1 se presenta una simulación de diez mil trazas construidas con la ecuación (10), para un vencimiento de 12 meses, un valor de σ de 15 y los parámetros correspondientes para el mercado colombiano que aparecen en el anexo de este trabajo.

En la Gráfica 2 se muestra la misma simulación, solo que esta vez se presenta en el eje z, la frecuencia de los histogramas del precio. Como lo explican Trespalacios, Rendón, & Pantoja (2012 ), la volatilidad del precio forward será menor que la volatilidad del spot.

De esta manera, las conclusiones que se puedan obtener analizando la variabilidad de los precios spot históricos no necesariamente corresponderán a las conclusiones que se obtendrían si se analiza la variabilidad de los precios forward. Se sugiere revisar la metodología actual que la cámara de riesgo colombiana realiza, toda vez que sus análisis de riesgo están basados en el comportamiento del precio spot de la energía eléctrica.

Los métodos de Montecarlo están basados en la analogía de probabilidad y número de ocurrencia de valores obtenidos de experimentos aleatorios. Consiste en la realización de ensayos y medición de los resultados, según Glasserman (2003 ) la ley de los grandes números asegura que la estimación de los estadísticos encontrados converge a la solución real a medida que el número de ensayos aumenta. En este trabajo, se realiza el cálculo a partir de simulación de montecarlo, para esto deben representarse las relaciones de las variables en tiempo discreto.

Partiendo de la ecuación diferencial estocástica (10), se obtiene la ecuación de recurrencia de tiempo discreto que se presenta a continuación:

Donde,

ΔW t = √ Δt.Ɛt

Ɛ t ~N ( 0,1 )

Para la generación de un paso nuevo, es necesaria la generación de un número aleatorio que provenga de una distribución normal estándar, este número está representado con Ɛt , los demás parámetros requeridos para la simulación deben son seleccionados de tal manera que se presente coherencia entre sus valores y las medidas de tiempo seleccionadas.

5. Medición del riesgo

El proceso de estimación de la garantía, parte de la medición de los cambios en el precio de contratos de futuros sobre energía eléctrica para diferentes vencimientos y en un horizonte de d días.

Si se considera un agente que acaba de realizar una transacción de compra de un contrato de futuros con vencimiento T meses adelante, el rendimiento de su estado de pérdidas y ganancias para los próximos d días, estará dado por ѱ T d .

Donde:

F 0 : es el precio de los contratos de futuro con vencimiento en el mes T, valorado el día inicial. Corresponde a una variable determinística y la entrega el mercado.

F d : es el precio de los contratos de futuro con vencimiento en el mes T, valorado el día d. Corresponde a una variable aleatoria.

Ln: corresponde al operador de logaritmo natural.

En las Gráficas 3 y 4 se observa que conforme se espera que el agente mantenga por más tiempo la posición, esto es un aumento en d, la volatilidad esperada del flujo de caja del inversionista será más alta. Sin embargo, debido a las características del precio forward, conforme aumenta T no se incrementa la volatilidad de ѱ T d . Estas características explican que para contratos con vencimiento más lejano se requerirán menores márgenes de garantía, como actualmente está definido por la cámara. Así mismo, conforme la cámara quiera cubrir un periodo de días mayores con la posición abierta, se requerirá un mayor nivel de garantías.

Con el objetivo de medir la volatilidad a la que estaría expuesta la Cámara de Riesgo con un nivel de confianza del 99% y para un horizonte de d días, se estiman los siguientes modelos:

5.1 Valor en Riesgo, VaR

De acuerdo con ( Meucci, 2007 ), la medida de VaR es bastante popular entre los profesionales de la gestión de riesgo, especialmente luego de los acuerdos de Basilea. El VaR para un nivel de confianza dado puede calcularse como el cuantil correspondiente de los rendimientos del flujo de caja de un inversionista. Considerando que la cámara de riesgo debe considerarse como un agente altamente averso al riesgo, para este trabajo se considera un nivel de confianza del 99%, para lo cual el VaR corresponderá al percentil 1 de la distribución de probabilidad de ѱ T d .

En la Gráfica 5 se presenta cómo se modifica el VaR (en eje y) para una posición que se mantiene un número de días d (en eje x) en una posición en contratos con periodo de vencimiento de un mes y cuando la prima de riesgo de largo plazo es modificada. Se aprecia como a medida que una posición se mantiene en el tiempo, el VaR de la inversión es más alto.

Se encuentra, adicionalmente, que el aporte marginal al VaR por el aumento del número de días depende de la prima de riesgo de largo plazo considerada, es así como deben considerarse casos extremos para primas de riesgo y no conformarse con un análisis de prima de riesgo promedio histórico. Para los valores con los que se construyen estas sensibilidades se consultó con especialistas del sector eléctrico acerca de posibles valores de alfa para casos extremos (durante un evento El Niño).

En cuanto a la dependencia de este indicador de riesgo y el periodo de vencimiento se aprecia que existe una relación inversa. Un contrato que tiene un periodo de vencimiento mayor, tiene un VaR menor y así, coherente con la definición actual de los límites por parte de la CCRC, a los contratos con periodos de vencimiento mayores deben exigírsele un menor nivel de garantías que a los contratos con periodos de vencimientos menores, ya que un incremento en el vencimiento del contrato no incrementa la volatilidad del rendimiento del estado de pérdidas y ganancias del agente debido a las características del precio futuro.

5.2 Valor en Riesgo Condicional, CVaR

Se estima el CVaR como una medida alternativa al VaR que cuantifica la magnitud esperada de las pérdidas en que se podría incurrir en caso de superarse el VaR. El CVaR se mide como la esperanza matemática de las pérdidas superiores al VaR, para un nivel de confianza del 99%.

En la Gráfica 7 , se presenta el CVaR (eje y) para una posición que se mantiene d días (eje x) en un contrato de futuro con vencimiento en un mes para varios valores de la prima de riesgo. Se observa, al igual que en el caso del VaR, que a medida que se mantiene la posición en el tiempo, el CVaR se incrementa, pero esta vez por encima del VaR.

Por otro lado, es consistente la relación inversa del CVaR y el vencimiento del contrato de futuros, contratos con vencimientos menores reportan un CVaR superior. Asi, a un contrato de futuros con vencimiento en 1 mes le correspondería un CVaR de dos días de aproximadamente 6,5%, mientras que para un contrato de futuro con vencimiento en 18 meses esta misma medida de riesgo estaría alrededor del 3.3%.

6. Resultados

La metodología actual de la Cámara de Riesgo para el cálculo de la garantía de los futuros sobre energía eléctrica está basada en el comportamiento del precio spot de la energía eléctrica. Como se demuestra previamente en el numeral 4, en un mercado accionario puede ser indiferente analizar la volatilidad del futuro o la del precio subyacente, por el contrario, en el mercado de energía eléctrica los resultados que se obtienen analizando el comportamiento del spot difieren de los resultados obtenidos analizando el comportamiento de los contratos de futuro dado que la volatilidad del precio a plazo es menor que la volatilidad del spot.

Se propone entonces que la estimación de las garantías de los futuros de energía eléctrica se realice con base en el precio del futuro de energía eléctrica, no con base en el spot. En ausencia de series históricas y mientras se obtiene más liquidez e información de las transacciones realizadas en el Mercado de Derivados Energéticos, DERIVEX, se recurre al uso del modelo estocástico presentado previamente que representa el comportamiento del precio del futuro e incorpora movimientos extremos, que en el caso del mercado de energía eléctrica vienen representados por la aparición del Fenómeno del Niño.

Bajo el entendimiento de los riesgos que asume la Cámara de Riesgo en un mercado sin liquidez y con el fin de estimar las garantías exigidas a quienes participan en este mercado, se plantea el uso de modelos de riesgo de mercado con un nivel de confianza del 99%, para un horizonte de d días y sobre el precio del futuro en el evento de presentarse Fenómeno del Niño. Así, se estima el VaR y el CVaR para los contratos de futuros con vencimiento mensual de 1 a 18 meses y para posiciones que van desde 1 hasta 30 días, con un nivel de confianza del 99%. Como se mencionó anteriormente, los eventos extremos en mercados de energía eléctrica corresponden a periodos donde se presenta el Fenómeno del Niño, por esta razón, en las estimaciones del riesgo se tienen en cuenta diferentes valores de prima de riesgo correspondientes a periodos de Niño y periodos de no Niño, se propone que la cámara obtenga protección ante el 99% de los eventos Niño, lo cual es coherente con el riesgo que asume ante un mercado ilíquido como lo es Derivex.

Los resultados de aplicar la metodología propuesta en este documento, partiendo de un escenario de aversión al riesgo, sugieren unos valores diferentes a los que actualmente exige la Cámara de Riesgo en términos de garantías. Con los parámetros utilizados para el mercado colombiano la propuesta de garantías se resume en dos tablas: una, que presenta las garantías estimadas para diferentes vencimientos y otra, que presenta las garantías estimadas dependiendo del número de días de cobertura, d. Conforme se conozca más información sobre la evolución de los precios y las transacciones que se den en Derivex, será necesario estimar de nuevo las garantías partiendo de la serie histórica de precios de futuros.

De acuerdo con los resultados presentados en las Tablas 1 y 2, para un contrato con vencimiento en 1 mes, el nivel de riesgo medido con el CVaR para una posición de 2 días se encuentra alrededor de 6.53%, mientras que para un contrato de futuros con vencimiento en 18 meses éste se ubicaría aproximadamente en 3.3%. De otro lado, si la cámara cubriera 12 días de posición en un contrato con vencimiento en 1 mes, su garantía sería aproximadamente 21%, mientras que para un contrato de 18 meses ese porcentaje estaría cubriendo 27 días de posición.

Actualmente, se cuenta con 24 contratos listados en el mercado de futuros sobre energía eléctrica de Colombia, es decir, 24 vencimientos mensuales para realizar coberturas en un mes particular o en bloques de meses hasta por dos años. Las garantías oscilan entre 15% y 23% dependiendo del plazo. La cámara estima estos porcentajes con el fin de cubrir una potencial pérdida máxima generada a nivel de cada cuenta por las posiciones que compensa y liquida y depende la volatilidad máxima del spot en un periodo de 2 días.

De acuerdo con los resultados obtenidos en este trabajo, para lograr una cobertura de 2 días, los porcentajes de las garantías que debería exigir la cámara por vencimiento deberían corresponder con la Tabla 4 . En este sentido, es válido afirmar que la cámara se encuentra sobrecubierta si desea protegerse ante el riesgo para un periodo de 2 días y que podría flexibilizar los niveles de las garantías en pro de una mayor liquidez del mercado de futuros sobre energía eléctrica y guardando equilibrio con niveles de protección ante eventos extremos como el Fenómeno del Niño.

El 21% exigido actualmente por la Cámara representa en nuestra estimación 12 días de cobertura para un contrato con vencimiento en un mes y en el evento de presentarse Fenómeno del Niño. En este sentido, si la Cámara desea cubrirse 2 días, la garantía exigida debería situarse alrededor del 7% en el escenario de mayor aversión al riesgo. El nivel de garantías debería estimarse guardando un equilibrio entre unos costos de oportunidad razonables para los agentes que participan en Derivex y un nivel de protección elevado para la Cámara ante un mercado de poca liquidez.

7. Esquema de garantías propuesto

En la tabla 6, se presenta una propuesta de los niveles de garantías a exigir en el mercado colombiano de futuros sobre energía eléctrica, logrando una cobertura de 5 o más días en eventos extremos de Fenómeno del Niño.

Ahora, si la Cámara desea cubrir un periodo de días mayor, se requerirá un mayor nivel de garantías, tal como se muestra en las tablas anexas para diferentes escenarios (Fenómeno del Niño) y vencimiento. Se recomienda además mantener una revisión periódica de los niveles de garantías propuestos, de manera que se pueda incluir la información adicional que se genere en el mercado.

8. Conclusiones

En el mercado de energía eléctrica los resultados que se obtienen analizando el comportamiento del spot difieren de los resultados obtenidos analizando el comportamiento de los contratos de futuro dado la distribución de probabilidad de los cambios del spot no es un estimador adecuado de la distribución de probabilidad de los cambios del precio de los futuros. Por tanto, los resultados de aplicar la metodología propuesta en este trabajo, partiendo de un escenario de aversión al riesgo, sugieren unos niveles de garantía diferentes a los que actualmente exige la Cámara de Riesgo.

Los niveles de garantía exigidos actualmente por la cámara de riesgo en Colombia responden a la necesidad de cubrir el riesgo de variaciones extremas en los precios de los contratos de futuros de energía eléctrica, sin embargo, son excesivos. Por otro lado, este esquema no da respuesta a los criterios de cobertura que la cámara supone, como lo son el periodo de 2 días de cobertura y el nivel de confianza del 99%. Por tanto, la metodología actual que se usa para la estimación de las garantías en el mercado colombiano no es adecuada para la definición de los niveles requeridos cuando se transan derivados asociados a la energía eléctrica.

Actualmente, las garantías exigidas en el mercado colombiano para contratos de futuros sobre energía eléctrica a diferentes vencimientos varían entre 21% y 12%. Los resultados de esta estimación sugieren niveles de garantías entre 11% y 7% para una cobertura de 5 días. Por lo que en pro de una mayor liquidez del mercado y guardando equilibrio con niveles de protección ante eventos extremos como el Fenómeno del Niño, la CRCC podría disminuir los niveles de garantía exigidos. El 21% exigido actualmente por la Cámara representa en la estimación 12 días de cobertura para un contrato con vencimiento en un mes y en el evento de presentarse Fenómeno del Niño. En este sentido, si la Cámara desea cubrirse 2 días, la garantía exigida debería situarse alrededor del 7% en el escenario de mayor aversión al riesgo.

Se aprecia una relación directa entre los días de tenencia de un contrato y las estimaciones de riesgo, el aporte marginal al VaR por el aumento del número de días depende de la prima de riesgo de largo plazo considerada, es así como deben considerarse casos extremos para primas de riesgo y no incluir solo primas de riesgo promedio histórico.

En cuanto a la dependencia de este indicador de riesgo y el periodo de vencimiento se aprecia que existe una relación inversa. Un contrato que tiene un periodo de vencimiento mayor, tiene un VaR menor y así, coherente con la definición actual de los límites por parte de la CCRC, a los contratos con periodos de vencimiento mayores deben exigírsele un menor nivel de garantías que a los contratos con periodos de vencimientos menores, ya que un incremento en el vencimiento del contrato no incrementa la volatilidad del rendimiento del estado de pérdidas y ganancias del agente debido a las características del precio futuro.

Referencias

  1. Théorie de la spéculation, Gauthier-Vilars Bachelier L. Paris: Universidad de la Sorbona; 1900.
  2. The Pricing of Options and Corporate Liabilities Black F., Scholes M. Journal of Political Economy.1973;:637-654.
  3. Determinantes del precio de la energía eléctrica en el mercado no regulado en Colombia García J., Gaviria A., Salazar l. Revistas Ciencias Estratégicas.2011;:225-246.
  4. A class of marked point processes for modelling Geman H., Roncoroni A. ESSEC; 2003.
  5. Montecarlo methods in financial engineering Glasserman P. New York: Springer; 2003.
  6. Options, futures and other derivatives Hull J. New York: Pearson Prentice Hall; 2010.
  7. Modelling risk in central counterparty clearing houses: a review Knott R., Mills A. Financial Stability Review.2002;:162-174.
  8. Electricity prices and power derivatives Lucia J., Schwartz E. Review of Derivatives Research.2002;:5-50.
  9. Modelación de la volatilidad de los precios de la energía eléctrica en Colombia Maya C., Gil M. Revista Ingenierías Universidad de Medellín.2008;:87-114.
  10. Risk and asset allocation Meucci A. New York: Springer; 2007.
  11. Modelling risk in central counterparty clearing houses: a review Mills R. K. Financial Stability Review.2002.
  12. Modelling risk for electric power Pantoja J. INNOVAR, Journal of Administrative and Social Sciences.2012;:22-44.
  13. Los precios forward sobre electricidad. ¿Determinados racionalmente por los agentes del mercado colombiano? Pantoja J., Salazar G. AD-MINISTER.2011;:77-99.
  14. ¿Son adecuados los depósitos de garantía exigidos por MEFF? Pardo J. M., Tornero Á. P. Fundación de Estudios de Economía Aplicada.2005.
  15. Energy risk, valuing and managing energy derivatives Pilipovic D. Estados Unidos: McGraw Hill; 2007.
  16. The dinamics of stock index and stock index futures returns Stoll H., Whaley R. 1990.
  17. Estrategia de cobertura a través de contratos a plazo en mercados eléctricos Trespalacios A., Rendón J. F., Pantoja J. Revista Latinoamericana de Administración.2012;:148-157.
  18. Riesgos financieros y económicos. Productos derivados y decisiones económicas bajo incertidumbre Venegas Martínez F. México D.F: Cengage Learning Editores; 2008.

Article Details

How to Cite
PANTOJA-ROBAYO, Javier; MARADEY ANGARITA, Kelly; TRESPALACIOS CARRASQUILLA, Alfredo. Analysis of the financial margins required to hedge risks in electric power futures markets. Ecos de Economía: A Latin American Journal of Applied Economics, [S.l.], v. 21, n. 45, feb. 2018. ISSN 2462-8107. Available at: <http://publicaciones.eafit.edu.co/index.php/ecos-economia/article/view/electricity-futures-market>. Date accessed: 18 aug. 2018. doi: https://doi.org/10.17230/ecos.2017.45.4.
Section
Articles
Join the conversation. Follow OUP Religion for the latest religion news and insights.