Infrared Radiation as Heat Transfer Mechanism of High Quality in Heating Processes

Main Article Content

Jose Luis Castañeda
Andrés Adolfo Amell Arrieta
Francisco Javier Cadavid Sierra


infrared radiation, radiant tube, radiant heat, thermal radiation.


This paper tries to address the infrared radiation as a primary mechanism of heat transfer of high-quality in different heating processes, to highlightthe issues and applicability in the use, the characterization and design of thetechnologies powered by combustion systems. For this, it summarizes its phenomenology, definitions, assumptions and solutions; addresses some numerical methods used to solve the Radiative Transfer Equation (RTE) and its coupling to CFD codes (Computational Fluids Dynamics); as also the types of radiant equipment usually used, in especial the radiant tubes; as well as certain experimental methodologies used to characterize radiant systems, and some design methodologies. It was found, that the flux model and the discrete transferare sufficient to give solution to the radiation heat transfer phenomenon with the help of CFD codes, as well as the measuring device mainly used in experimental measurements is the radiometer, and the most practical design methodology may be the optimization.

PACS: 88.05.Bc, 88.05.Sv, 88.05.Gh, 88.05.De


Download data is not yet available.
Abstract 967 | PDF (Español) Downloads 448 HTML (Español) Downloads 1569


[1] F. Chejne, K. Sánchez, A. Amell, Análisis energético industrial del Valle de Aburrá. Medellín: Centro de Publicaciones, Universidad Nacional de Colombia, sede
Medellín, 2007. Referenciado en 97

[2] S. Turns, An Introduction to Combustion: Concepts and Applications, 2.a ed. Singapore: McGraw-Hill, 2000. Referenciado en 98

[3] I. Glassman, Combustion, 2.a ed. Orlando: Academic Press, 1987. Referenciado en 98

[4] R. Mital, J. P. Gore, y R. Viskanta, “A Radiation Efficiency Measurement Procedure For Gas-Fired Radiant Burners”, Experimental Heat Transfer, vol. 11, n.o
1, pp. 3-21, ene. 1998. Referenciado en 98

[5] C. Baukal. Heat Transfer in Industrial Combustion. Florida: CRC Press, 2000. Referenciado en 98, 112, 114, 115

[6] K. Chapman, et al. “Radiative Heat Transfer”. School of Mechanical Engineering, Purdue University: Indiana, 1990. Referenciado en 98, 118

[7] Y. Deshmukh, Industrial Heating: Principles, Techniques, Materials, Applications, and Design. Taylor & Francis, 2005. Referenciado en 98, 112, 113

[8] A. Ray, Y. N. Tiwari, G. Krishna, G. Das, M. Gunjan, S. C. Bose, R. N. Ghosh, “Health assessment of 22 years service-exposed radiant tube from an oil refinery”, Engineering Failure Analysis, vol. 18, n.o 3, pp. 1067-1075, abr. 2011. Referenciado en 98

[9] E. Dudkiewicz, J. Jezowiecki, “The influence of orientation of a gas-fired direct radiant heater on radiant temperature distribution at a work station”, Energy
and Buildings, vol. 43, n.o 6, pp. 1222-1230, jun. 2011. Referenciado en 98

[10] A. S. Mujumdar, Ed., Handbook of Industrial Drying, Third Edition, 3.a ed. CRC Press, 2006. Referenciado en 98

[11] A. Amell, H. Copete, y J. Gómez, “Análisis de los parámetros para el diseño y optimización de un tubo radiante”, Revista Facultad de Ingeniería Universidad
de Antioquia, n.o 38, pp. 31-39, 2006. Referenciado en 98, 113, 117

[12] K. J. Daun y J. R. Howell, “Inverse design methods for radiative transfer systems”, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 93, n.o
1-3, pp. 43-60, jun. 2005. Referenciado en 98, 99, 118

[13] S. M. N. Bayat, “Inverse boundary design of a radiant furnace with diffusespectral design surface”, International Communications in Heat and Mass Transfer, vol. 37, n.o 1, pp. 103-110, 2010. Referenciado en 98, 99, 118

[14] R. Sheridan, Determination of radiant output from infrared tube heaters, May 1994. Final report. 1994. Referenciado en 99, 115, 116

[15] N. Tsioumanis, J. Brammer, J. Hubert, “Flow processes in a radiant tube burner: Combusting flow”, Energy Conversion and Management, vol. 52, n.o 7, pp. 2667-
2675, jul. 2011. Referenciado en 99, 111, 114

[16] Y. Tian, X. L. Liu, Z. Wen, “Numerical Study on the Effect of Inner Tube Position on Heat Transfer Process in Self-Recuperative Radiant Tube”, Advanced Materials Research, vol. 228-229, pp. 676-680, abr. 2011. Referenciado en 99

[17] M. Tye-Gingras, L. Gosselin, “Investigation on heat transfer modeling assumptions for radiant panels with serpentine layout”, Energy and Buildings, vol. 43,
n.o 7, pp. 1598-1608, jul. 2011. Referenciado en 99

[18] S. Bopche, A. Sridharan, “Local configuration factors for radiant interchange between cylindrical surfaces in rod bundle geometry”, Nuclear Engineering and Design, vol. 241, n.o 3, pp. 903-924, mar. 2011. Referenciado en 99, 107, 110

[19] C. Bao, N. Cai, E. Croiset, “An analytical model of view factors for radiation heat transfer in planar and tubular solid oxide fuel cells”, Journal of Power Sources, vol. 196, n.o 6, pp. 3223-3232, mar. 2011. Referenciado en 99, 107, 110

[20] K. Heyde, Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach, Third Edition. Taylor & Francis, 2004. Referenciado en 99

[21] J. Rickards Campbell, Las radiaciones: reto y realidades, 2a. ed. México: SEP; CONACYT; Fondo de Cultura Económica, 1997. Referenciado en 99

[22] D. Bohm, Quantum Theory. Courier Dover Publications, 1989. Referenciado en 99

[23] F. Incropera, D. DeWitt, Fundamentos de Transferencia de Calor. México: Pretince Hall, 1999. Referenciado en 100, 101, 102, 103, 104, 106, 107, 108

[24] Michael F. Modest, Radiative Heat Transfer. Academic Press, 2003. Referenciado en 100, 103, 104, 105, 107

[25] M. Brewster, Thermal Radiative Transfer and Properties. John Wiley & Sons, 1992. Referenciado en 100

[26] B. Li, Y. Lu, L. Liu, K. Kudo, H. Tan, “Analysis of directional radiative behavior and heating efficiency for a gas-fired radiant burner”, Journal of Quantitative
Spectroscopy and Radiative Transfer, vol. 92, n.o 1, pp. 51-59, abr. 2005. Referenciado en 100

[27] R. Siegel, J. Howell, “Thermal radiation heat transfer”. Scientific and Technical, 4ta. Ed., New York, CRC Press, 2002. Referenciado en 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111

[28] R. Viskanta, “Overview of convection and radiation in high temperature gas flows”, International Journal of Engineering Science, vol. 36, n.o 12-14, pp. 1677-
1699, sep. 1998. Referenciado en 107, 111, 112

[29] Z. Guo, S. Maruyama, “Radiative heat transfer in inhomogeneous, nongray, and anisotropically scattering media”, International Journal of Heat and Mass Transfer,
vol. 43, n.o 13, pp. 2325-2336, jul. 2000. Referenciado en 108

[30] T. Hendricks, J. Howell, “Absorption/Scattering Coefficients and Scattering Phase Functions in Reticulated Porous Ceramics”, Journal of Heat Transfer, vol. 118, n.o 1, pp. 79-87, feb. 1996. Referenciado en 108

[31] X. Fu, R. Viskanta, y J. P. Gore, “A model for the volumetric radiation characteristics of cellular ceramics”, International Communications in Heat and Mass Transfer, vol. 24, n.o 8, pp. 1069-1082, dic. 1997. Referenciado en 108

[32] R. Siegel, J. Howell. Thermal Radiation Heat Transfer, Fourth Edition, 3.a ed. Taylor & Francis, 1992. Referenciado en 108, 109

[33] M. Williamson, D. Wilson, “Development of an improved heating system for industrial tunnel baking ovens”, Journal of Food Engineering, vol. 91, n.o 1, pp.
64-71, mar. 2009. Referenciado en 109

[34] E. Keramida, H. Liakos, M. Founti, A. Boudouvis, N. Markatos, “Radiative heat transfer in natural gas-fired furnaces”, International Journal of Heat and Mass Transfer, vol. 43, n.o 10, pp. 1801-1809, may 2000. Referenciado en 110

[35] M. Carvalho, T. Farias, “Modelling of Heat Transfer in Radiating and CombustingSystems”, Chemical Engineering Research and Design, vol. 76, n.o 2, pp.175-184, feb. 1998. Referenciado en 110, 111, 112

[36] Y. Wu, D. Haworth, M. Modest, B. Cuenot, “Direct numerical simulation ofturbulence/radiation interaction in premixed combustion systems”, Proceedingsof the Combustion Institute, vol. 30, n.o 1, pp. 639-646, ene. 2005.Referenciado en 110

[37] T. Tong, W. Li, “Enhancement of thermal emission from porous radiant burners”,Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 53, n.o 2, pp.235-248, feb. 1995. Referenciado en 110

[38] P. Cumber, “Improvements to the discrete transfer method of calculating radiativeheat transfer”, International Journal of Heat and Mass Transfer, vol. 38, n.o12, pp. 2251-2258, ago. 1995. Referenciado en 111

[39] M. Bidi, R. Hosseini, y M. R. H. Nobari, “Numerical analysis of methane-aircombustion considering radiation effect”, Energy Conversion and Management,vol. 49, n.o 12, pp. 3634-3647, dic. 2008. Referenciado en 111

[40] S. Sazhin, E. Sazhina, O. Faltsi-Saravelou, P. Wild, “The P-1 model for thermalradiation transfer: advantages and limitations”, Fuel, vol. 75, n.o 3, pp. 289-294,feb. 1996. Referenciado en 111

[41] V. Feldheim, P. Lybaert, “Solution of radiative heat transfer problems with thediscrete transfer method applied to triangular meshes”, Journal of Computationaland Applied Mathematics, vol. 168, pp. 179-190, jul. 2004. Referenciado en 111
[42] S. Kumar, A. Majumdar, C. Tien, “The differential-discrete-ordinate methodfor solutions of the equation of radiative transfer”, in ASME 1988 National HeatTransfer Conference, 1990, pp. 424-429. Referenciado en 111

[43] R. Tucker, Combustion Handbook in File N 65, How do I predict radiative heattransfer in industrial furnaces? International Flame Research Foundation (IFRF),2001. Referenciado en 111

[44] P. Coelho, J. GonÇalves, M. Carvalho, D. Trivic, “Modelling of radiative heattransfer in enclosures with obstacles”, International Journal of Heat and MassTransfer, vol. 41, n.o 4-5, pp. 745-756, feb. 1998. Referenciado en 111

[45] R. Viskanta y M. P. Menguc, “Radiation heat transfer in combustion systems”,Progress in Energy and Combustion Science, vol. 13, pp. 97-160, 1987.Referenciado en 111

[46] C. Baukal, Industrial Burners, Handbook. Florida: CRC Press LLC, 2003.Referenciado en 113, 114

[47] A. van der Drift, N. B. K. Rasmussen, K. Jørgensen, “Improved Efficiency DryingUsing Selective Emittance Radiant Burners”. Applied Thermal Engineering, vol.17, n.o 8-10, p. 911-920. Referenciado en 112, 113

[48] M. A. Irfan y W. Chapman, “Thermal stresses in radiant tubes due to axial,circumferential and radial temperature distributions”, Applied Thermal Engineering,vol. 29, n.o 10, pp. 1913-1920, jul. 2009. Referenciado en 113

[49] G. Dini, S. Monir Vaghefi, M. Lotfiani, M. Jafari, M. Safaei-Rad, M. Navabi,S. Abbasi, “Computational and experimental failure analysis of continuousannealingfurnace radiant tubes exposed to excessive temperature”, EngineeringFailure Analysis, vol. 15, n.o 5, pp. 445-457, jul. 2008. Referenciado en 113

[50] Eclipse Combustion, I. Eclipse Combustion, Inc.
[cited 2009; Proveedor de sistemasde combustión]. Available from: en 113

[51] M. Irfan y W. Chapman, “Thermal stresses in radiant tubes: A comparisonbetween recuperative and regenerative systems”, Applied Thermal Engineering,vol. 30, n.o 2-3, pp. 196-200, feb. 2010. Referenciado en 114

[52] David W. Collier, “Recuperative radiant tube heating system especially adaptedfor use with butane”, 1993. Referenciado en 114

[53] G. Scribano, G. Solero, A. Coghe, “Pollutant emissions reduction and performanceoptimization of an industrial radiant tube burner”, Experimental Thermaland Fluid Science, vol. 30, n.o 7, pp. 605-612, jul. 2006. Referenciado en 114
[54] C. Galletti, A. Parente, y L. Tognotti, “Numerical and experimental investigationof a mild combustion burner”, Combustion and Flame, vol. 151, n.o 4, pp. 649-664,dic. 2007. Referenciado en 114

[55] M. Tiwari, A. Mukhopadhyay, D. Sanyal, “Parameter optimization through performanceanalysis of model based control of a batch heat treatment furnace withlow NOx radiant tube burner”, Energy Conversion and Management, vol. 46, n.o13-14, pp. 2114-2133, ago. 2005. Referenciado en 114
[56] J. P. Ploteau, P. Glouannec, y H. Noel, “Conception of thermoelectric flux metersfor infrared radiation measurements in industrial furnaces”, Applied ThermalEngineering, vol. 27, n.o 2-3, pp. 674-681, feb. 2007. Referenciado en 115

[57] N. Arai, A. Matsunami, y S. W. Churchill, “A review of measurements of heatflux density applicable to the field of combustion”, Experimental Thermal andFluid Science, vol. 12, n.o 4, pp. 452-460, may 1996. Referenciado en 115

[58] N. Fricker, Combustion handbook, in File N 64, How do I measure the parameterscharacterising radiation heat transfer in furnaces? International FlameResearch Foundation (IFRF), 2001. Referenciado en 115

[59] R. Mital, J. Gore, R. Viskanta, A. Mcintosh, “An experimental evaluation ofasymptotic analysis of radiant burners”, Symposium (International) on Combustion,vol. 27, n.o 2, pp. 3163-3171, 1998. Referenciado en 116

[60] H. Ramamurthy, S. Ramadhyani, R. Viskanta, “Development of fuel burn-upand wall heat transfer correlations for ows in radiant tubes”. Numerical HeatTransfer, Part A: Applications: An International Journal of Computation andMethodology, vol. 31 n.o 6, pp. 563 - 584, 1997. Referenciado en 118

[61] A. Pourshaghaghy, et al. “An inverse radiation boundary design problem for anenclosure lled with an emitting, absorbing, and scattering media”. International Communications in Heat and Mass Transfer, vol. 33 n.o 3, pp. 381-390, 2006.Referenciado en 118

[62] S. A. Rukolaine, “Regularization of inverse boundary design radiative heat transferproblems”, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.104, n.o 1, pp. 171-195, mar. 2007. Referenciado en 118