Fermentation Tecniques and Applications of Bacterial Cellulose: a Review

Main Article Content

Luz Dary Carreño Pineda
Luis Alfonso Caicedo Mesa
Carlos Arturo Martínez Riascos https://orcid.org/0000-0002-7724-6565

Keywords

Bacterial Cellulose, Acetobacter xylinum, Static Culture, Airlift reactor, Tissue Engineering, Cellulose membrane.

Abstract

Bacterial cellulose is a polymer obtained by fermentation with microorganisms from Acetobacter, Rhizobium, Agrobacterium and Sarcina genera. Amongthem, Acetobacter xylinum is the most efficient specie. This polymer has the same chemical composition of plant cellulose, but its conformation and physicochemical properties are different, making it attractive for several applications, especially in the areas of food, separation processes, catalysis and health, due to its biocompatibility. However, the main problem is the production in mass that is constrained by low yield. It is therefore necessary to develop some alternatives. This paper presents a review about synthesis, production, properties and principal applications of bacterial cellulose, as well as some alternatives to reduce the difficulties for process scaling.

MSC: 92-03

Downloads

Download data is not yet available.
Abstract 2739 | PDF (Español) Downloads 632 HTML (Español) Downloads 14639

References

[1] R. Jonas, L. Farah “Production and applications of microbial cellulose.” PolymerDegradation ans Stability, vol. 59, pp. 101 - 106, 1998. Referenciado en 306, 307,309

[2] E. Vandamme, S. De Baets, A. Vanbalaen, K. Joris, P. De Wulf. “Improved productionof bacterial cellulose and its application potential”Polymer Degradationand Stability, vol. 59, pp. 93 - 99, 1998. Referenciado en 306

[3] J. Mathews, C. Skopec, P. Manson, P. Zuccato, R. Torget, J. Sugiyama, M.Himmel, J. Brady. “Computer Simulation studies of microcrystalline celluloseIb.” Carbohydrate Research., vol. 341 no. 1, pp.138 - 152, 2006.Referenciado en 306

[4] A. O’Sullivan “Cellulose: The structure slowly unravels.” Cellulose, vol. 4 no. 3,pp. 173 - 207, 1997. Referenciado en 306

[5] M. Akerholm, y L. Salmén. “Dynamic FT-IR Spectroscopy for carbohydrateanalysis of wood pulps.” Journal of Pulp and Paper Science, vol. 28 no. 7, pp.245 - 249, 2002. Referenciado en 306

[6] M. Akerholm, M, B. Hinterstoisser, L. Salmén. “Characterization of the crystallinestructure of cellulose using static and dynamic FT-IR spectroscopy” CarbohydrateResearch., vol. 339 no. 3, pp. 569 - 578, 2004. Referenciado en 306

[7] S. Bielecki, A. Krystynowicz, M. Turkiewicz, H. Kalinowska. “Bacterial Cellulose”Biopolymers online., 2005. Referenciado en 307, 308, 309, 310

[8] W. Dudman “Cellulose production by Acetobacter acetigenum and other Acetobacterspp”. Journal of General Microbiology., vol. 21 no. 2, pp. 312 - 326, 1959.Referenciado en 307, 312

[9] J. Jung, J. Park, H. Chang. “Bacterial cellulose production by Gluconacetobacterhansenii in an agitated culture without living non-cellulose producing cells”.Enzyme and Microbial Technology., vol. 37 no. 3, pp. 347 - 354, 2005.Referenciado en 308

[10] S. Keshk. “Physical properties of bacterial cellulose sheets produced in presenceof lignosulfonate”. Enzyme and Microbial Technology, vol. 40 no. 1, pp. 9- 12,2006. Referenciado en 308

[11] V. Duvey, C. Saxena, L. Singh, K. Ramana, R. Chauhan. “Pervaporation of binarywater - ethanol mixtures through bacterial cellulose membrane”.Separation and Purification Technology, vol. 27 no. 3, pp. 163 - 171, 2002. Referenciadoen 308, 319

[12] T. Oikawa, T. Ohtori, M. Ameyama. “Production of cellulose from D. mannitolby Acetobacter xylinum KU - 1”. Bioscience, Biotechnology, and Biochemistry,vol 59 no. 2, pp 331 - 332, 1995. Referenciado en 308

[13] M. Ishihara, m. Matsunaga, N. Hayashi, V. Tisler. “Utilization of D - xyloseas carbon source for production of bacterial cellulose”. Enzyme and MicrobialTechnology., vol. 31 no. 7, pp. 986 - 991, 2002. Referenciado en 308

[14] S. Keshk, K. Sameshima. “Evaluation of different carbon sources for bacterialcellulose production”. African Journal of Biotechnology., vol. 4 no. 6, pp. 478 -482, 2005. Referenciado en 308

[15] P. Chawla, I. Bajaj, S. Survase, R. Singhal. “Microbial Cellulose: Fermentativeproduction and applications”. Food Technology and Biotechnology., vol. 47 no. 2,pp. 107 - 124, 2009. Referenciado en 308, 317

[16] P. Ross, R. Mayer, M. Benziman. “Cellulose Biosynthesis and Funtion in Bacteria”.Microbiol Rev., vol. 55 no. 1, pp. 35 - 58, 1991. Referenciado en 308,310

[17] N. Han, F. Robyt. “The mechanism of Acetobacter xylinum celullose biosynthesis:direction of chain elongation and the role of lipid pyrophosphate intermediatesin the cell membrane”. Carbohydrate Research., vol. 313 no. 2, pp. 125 -133, 1998.Referenciado en 308, 309

[18] M. Marx-Firgini, B. Pion. “Kinetic invetigations of biosynthesis of cellulose byActobacter xylinum”. Biochimica et Biophysica Acta, BBA) - General Subjects .,vol. 338 no. 2, pp. 382 - 393, 1974. Referenciado en 308

[19] K. Zaar. “Visualization of Pores, Export Sites) Correlated with Cellulose Productionin the Envelope of the Gram-negative Bacterium Acetobacter xylinum”.Journal of Cell Biology., vol 80 no. 3, pp. 773 - 777, 1979. Referenciado en 309

[20] F. Horii, H. Kaji, A. Hirai, Y. Tsunashima, K. Ohmine. “Cellulose assembliesproduced by Acetobacter xylinum”. ICR Annual Report, vol 6, pp. 28- 29, 1999.Referenciado en 309

[21] I. Saxena, M. Brown Jr. “Cellulose synthases and related enzymes”. CurrentOpinion in Plant Biology., vol. 3 no. 6, pp. 523 - 531, 2000. Referenciado en 309

[22] L. Caicedo, F. De França, L. De Almeida. “Produção de Celulose Bacterianaem Reatores de Tambor Rotatório”. Tesis para la obtención del grado de Doctoren Ciencias. Escola de Química. Río de Janeiro, Universidade Federal do Rio deJaneiro, 2002. Referenciado en 309, 317

[23] T. Okamoto, S. Yamano, H. Ikeaga, K. Nakamura. “Cloning of the Acetobacterxylinum cellulase gene and its expression in Escherichia coli and Zymomonasmobilis”. Applied Microbiology and Biotechnology., vol. 42 no. 4, pp. 563 -568,1994. Referenciado en 310

[24] N. Tahara, N. Tonouchi, H. Yano, F. Yoshinaga. “Purification and characterizationof exo-1,4-glucosidase from Acetobacter xylinum BPR2001”. Journal ofFermentation and Bioengineering., vol. 85 no. 6, pp. 589 - 594, 1998.Referenciado en 310

[25] W. Borzani, S. De Souza. “Mechanism of the film thickness increasing duringthe bacterial production of cellulose on non-agitated liquid media”. BiotechnologyLetters., vol. 17 no. 11, pp. 1271 - 1272, 1995. Referenciado en 311

[26] D. Klemm, D. Schumann, U. Udhardt, S. Marsch. “Bacterial synthesized cellulose-artificial blood vessels for microsurgery”. Progress in Polymer Science., vol.26 no. 9, pp. 1561 - 1603, 2001. Referenciado en 311, 318

[27] L. Carreño. “Efecto de las condiciones de cultivo y purificación sobre las propiedadesfisicoquímicas y de transporte en membranas de celulosa bacteriana”. Tesispara la obtención del grado de Doctor en Ingeniería. Departamento de IngenieríaQuímica. Bogotá, Universidad Nacional de Colombia, 2011.Referenciado en 311, 319

[28] M. Schramm, S. Hestrin. “Cellulose production by Acetobacter acetigenum andother Acetobacter spp”. Journal of General Microbiology., vol. 1350-0872, 11 no.1, pp. 123 - 129, 1954. Referenciado en 312

[29] Y. Yang, Y, S. Park, J. Hwang, Y. Pyun, Y. Kim. “Factors affecting Productionof Cellulose at the Air/Liquid Interface of a Culture of Acetobacter xylinum”.Journal of Fermentation and Bioengineering., vol. 85 no. 3, pp. 312 - 317, 1998.Referenciado en 312

[30] H. Toyosaki, T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida, Yoshinaga, F.“Screening of bacterial cellulose-producing Acetobacter strains suitable for agitatedculture”. Bioscience, Biotechnology and Biochemistry., vol. 59 no. 98, pp.1498 - 1502, 1995. Referenciado en 312

[31] H. Son, M. Heo, Y. Kim, S. Lee. “Optimization of fermentation conditions for theproduction of bacterial cellulose by a newly isolated Acetobacter”. Biotechnologyand Applied Biochemistry., vol 33 no. 1, pp. 1 - 5, 2001. Referenciado en 312, 316

[32] S. Hestrin, M. Schramm. “Synthesis of cellulose by Acetobacter xylinum. II.Preparation of freeze-dried cells capable of polymerizing glucose to cellulose”.Biochemical Journal., vol. 58 no2, 1954. Referenciado en 312

[33] M. Schramm, Z. Gromet, S. Hestrin, “Synthesis of Cellulose by Acetobacterxylinum 3. Substrates and Inhibitors”. Biochemical Journal., vol. 67 no. 4, pp.669 - 679, 1957. Referenciado en 312

[34] Z. Gromet, M. Schramm, S. Hestrin, “Synthesis of cellulose by Acetobacter xylinum.4. Enzyme systems present in a crude extract of glucose-grown cells”.Biochemical Journal., vol. 67 no. 4, pp. 679 - 689, 1957. Referenciado en 312

[35] S. Keshk, T. Razek, K. Sameshima. “Bacterial cellulose production from beetmolasses”. African Journal of Biotecgnology., vol, 5 no. 17, pp. 1517 - 1523, 2006.Referenciado en 313

[36] S. Bae, M. Shoda. “Production of bacterial cellulose by Acetobacter xylinumBPR2001 using molasses medium in a jar fermentor”. Applied Microbiology andBiotechnology, vol. 67 no. 1, pp. 45 - 51, 2005. Referenciado en 313

[37] F. Hong, K. Qiu. “An alternative carbon source from konjac powder for enhancingproduction of bacterial cellulose in static cultures by a model strainAcetobacter aceti subsp. xylinus ATCC 23770”. Carbohydrate Polymers., vol. 72no. 3, pp. 545 - 549, 2008. Referenciado en 313

[38] A. Kurosumi, C. Sasaki, Y. Yamashita, Y. Nakamura ,“Utilization of variousfruit juices as carbon source for production of bacterial cellulose by Acetobacterxylinum NBRC 13693”. Carbohydrate Polymers., vol. 76 no. 2, pp. 333 -335, 2009.Referenciado en 313

[39] J.Wu, R. Liu. “Thin stillage supplementation greatly enhances bacterial celluloseproduction by Gluconacetobacter xylinus”. Carbohydrate Polymers., vol. 90 no.1, pp. 116 - 121, 2012. Referenciado en 314

[40] K.Watanabe, S. Yamanaka. “Effects of Oxygen Tension in the Gaseous Phase onProduction and Physical Properties of Bacterial Cellulose Formed under StaticCulture Conditions”. Bioscience, Biotechnology and Biochemistry., vol. 59 no. 1,pp. 65 - 68, 1995. Referenciado en 314

[41] M. Matsuoka, T. Tsuchida, K. Matsushita, O. Adachi, F. Yoshinaga. “A SyntheticMedium for Bacterial Cellulose Production by Acetobacter xylinum subsp.Sucrofermentans”. Bioscience, Biotechnology, Biochemistry., vol. 60 no. 4, pp. 575- 579, 1996. Referenciado en 314, 319

[42] H. Jung, J. Jeong, O. Lee, G. Park, K. Kim, H. Park, S. Lee, Y. Kim, H. Son.“Influence of glycerol on production and structural - physical properties of cellulosefrom Acetobacter sp. V6 cultured in shake flasks”. Bioresource Technology.,vol. 101 no. 10, pp. 3602 - 3608, 2010. Referenciado en 314

[43] L. Sternberg, M. Deniro, R. Savidge. “Oxygen Isotope Exchange between Metabolitesand Water during Biochemical Reactions Leading to Cellulose Synthesis”.Plant Physiology., vol. 82, pp. 423 - 427, 1986. Referenciado en 315

[44] S. Bae, M. Shoda. “Statistical optimization of culture conditions for bacterialcellulose production using Box-Behnken design”. Biotechnology and Bioengineering.,vol. 90 no. 1, pp. 20 - 28, 2005. Referenciado en 315

[45] L. Zhou, D. Sun, L. Hu, Y. Li, J. Yang. “Effect of addition of sodium alginateon bacterial cellulose production by Acetobacter xylinum”. Journal of IndustrialMicrobiology & Biotechnology., vol. 34 no. 7, 483 - 489, 2007. Referenciado en 315

[46] T. Ishida, Y. Sugano, T. Nakai, M. Shoda. “Effects of acetan on production ofbacterial cellulose by Acetobacter xylinum”. Bioscience, Biotechnology, Biochemistry.,vol. 66 no. 8, pp. 1677 - 1681, 2002. Referenciado en 315

[47] Y. Chao, M. Miratai, Y. Sugano, M. Shoda. “Effect of addition of water-solublepolysaccharides on bacterial cellulose production in a 50-L airlift reactor”. BiotechnologyProgress., vol. 17 no. 4, pp. 781 - 785, 2001. Referenciado en 315,316

[48] J. Ha, J. Park. “Improvement of bacterial cellulose production in Acetobacterxylinum using byproduct produced by Gluconacetobacter hansenii”. Korean Journalof Chemical Engineering., vol. 29 no. 5, pp. 563 - 566, 2012.Referenciado en 315

[49] T. Naritomi, T.Kouda, H. Yano, F. Yoshinaga. “Effect of Ethanol on BacterialCellulose Production from Fructose in Continuous Culture”. Journal of Fermentationand Bioengineeering., vol. 85 no. 6, pp. 598 - 603, 1998.Referenciado en 315

[50] T. Naritomi, T. Kouda, H. Yano, F. Yoshinaga. “Effect of lactate on bacterialcellulose production from fructose in continuous culture”. Journal of Fermentationand Bioengineering., vol. 85 no. 1, pp. 89 - 95, 1998. Referenciado en 315

[51] T. Naritomi, T. Kouda, H. Yano, F. Yoshinaga. “Inhibitory effect of carbondioxide on bacterial cellulose production by Acetobacter in agitated culture”.Journal of Fermentation and Bioengineeering., vol. 85 no. 3, pp. 318 - 321, 1998.Referenciado en 315

[52] T. Oikawa, T. Ohtori, M. Ameyama. “Production of Cellulose from D-Arabitolby Acetobacter xylinum KU-1”. Bioscience, Biotechnology and Biochemistry.,vol.59 no. 8, pp. 1564 - 1565, 1995. Referenciado en 316

[53] L. Carreño y L. Caicedo. “Producción de Membranas de Celulosa Bacteriana aPartir de Diferentes Fuentes de Carbono”. Memorias, II Simposio sobre Biofábricas.Medellín, Colombia, 2005. Referenciado en 316

[54] T. Kouda, H. Yano, F. Yoshinaga, M. Kaminoyama, M. Kamiwano. “Characterizationof non-newtonian behavior during mixing of bacterial cellulose in abioreactor”. Journal of Fermentation and Bioengineering., vol. 82 no. 4, pp. 382- 386, 1996. Referenciado en 316

[55] T. Kouda, T. Naritomi, H. Yano, F. Yoshinaga. “Cultivation of Acetobacterxylinum for bacterial cellulose production in a modified airlift reactor”. Journalof Fermentation and Bioengineering., vol. 84 no. 2, pp 124 - 127, 1997.

[56] T. Kouda, H. Yano, F. Yoshinaga. “Effect of agitator configuration on bacterialcellulose productivity in aerated and agitated culture”. Journal of Fermentationand Bioengineering, vol. 83 no. 4, pp. 371 - 376, 1997. Referenciado en 316

[57] H. Cheng, P. Wang, J. Chen, W. Wu. “Cultivation of Acetobacter xylinum forbacterial cellulose production in a modified airlift reactor”. Biotechnology andApplied Biochemistry., vol. 35 no. 2, pp. 125 - 132, 2002. Referenciado en 316

[58] G. Serafica, R. Mormino, H. Bungay. “Inclusion of solid particles in bacterialcellulose”. Applied Microbiology and Biotechnology., vol. 58 no. 6, pp. 756- 760,2002. Referenciado en 317

[59] K. Cheng, J. Catchmark, A. Demirci. “Enhanced production of bacterial celluloseby using a biofilm reactor and its material property analysis“. Journal of BiologicalEngineering., vol 3 no. 12, 2009. Referenciado en 317

[60] J. Fontana, A. De Souza, C. Fontana, C., I. Torriani, J. Moreschi, B. Gallotti.“Acetobacter cellulose pellicle as a temporary skin substitute”. Applied Biochemistryand Biotechnology., vol. 24-25 no. 1, pp. 253 - 264, 1990.Referenciado en 317

[61] F. Yoshinaga, N. Tonouchi, K. Watanabe. “Research Progress in production ofBacterial Cellulose by Aeration and Agitation Culture and Its application as aNew Industrial Material”. Bioscience, Biotechnology, Biochemistry., vol. 61 no. 2,pp. 219 - 224, 1997. Referenciado en 317

[62] M. Iguchi, S. Yamanaka, A. Budhiono. “Bacterial bellulose: A master piece ofnature’s arts”. Journal of Materials Science., vol. 35 no. 2, pp. 261 - 270, 2000.Referenciado en 317

[63] S. Yamanaka, K. Watanabe, N. Kitamura. “The structure and mechanical propertiesof sheets prepared from bacterial cellulose”. Journal of Materials Science.,vol. 24 no. 9, pp. 3141 - 3145, 1989. Referenciado en 317

[64] N. Nishi, M. Uryu, S. Yamanaka, K. Watanabe, N. Kitamura. “The Structureand Mechanical Properties of Sheets Prepared from Bacterial Cellulose. Part 2.Improvement of the mechanical Properties of sheets and their applicability to diaphragms of electroacoustic transducers”. Journal of Materials Science., vol. 25no. 6, pp. 2997 - 3001, 1990. Referenciado en 317

[65] D. Ciecha_nska, H. Struszczyk, J. Kazimierczak, K. Guzi_nska, M. Pawlak, E.Kozłowska, G. Matusiak, M. Dutkiewicz. “New electro-acoustic transducers basedon modified bacterial cellulose”. Fibres and Textiles in Eastern Europe., vol. 36no. 1, 2002. Referenciado en 317

[66] W. Czaja, A. Krystynowicz, S. Bielecki, Brown, R. “Microbial cellulose: thenatural power to heal wounds”. Biomaterials., vol. 27 no. 2, pp. 145 - 151, 2006.Referenciado en 317

[67] W. Czaja, D. Young, M. Kawecki, R. Brown. “The Future Prospects of MicrobialCellulose in Biomedical Applications”. Biomacromolecules., vol. 8 no. 1, pp. 1 -12, 2007. Referenciado en 317

[68] Z. Cai, H. Jin, J. Kim. “Chitosan blended bacterial cellulose as a smart materialfor biomedical application, (Proceedings Paper)”. Nanosensors, Biosensors, andInfo-Tech Sensors and Systems 2009, Proceedings., vol. 7291, 2009.Referenciado en 317

[69] G. Olyveira, L. Costa, P. Basmaji. “Nanoskin bacterial cellulose structured -Towards the development of regenerative medicine”. Nanotechnology 2011: BioSensors, Instruments, Medical, Environment and Energy., vol. 3, pp. 267 - 270,2011. Referenciado en 317

[70] T. Maneerung, S. Tokura, R. Rujiravanit. “Impregnation of silver nanoparticlesinto bacterial cellulose for antimicrobial wound dressing“. Carbohydrate Polymers.,vol. 72 no. 1, pp. 43 - 51, 2008. Referenciado en 317

[71] G. Yang, J. Xie, F. Hong, Z. Cao, X. Yang. “Antimicrobial activity of silvernanoparticle impregnated bacterial cellulose membrane: Effect of fermentationcarbon sources of bacterial cellulose”. Carbohydrate Polymers., vo. 87 no. 1, pp.839 - 845, 2012. Referenciado en 317

[72] D. Schumann, J Wippermann, D. Klemm, F. Kramer, D. Koth, H. Kosmehl, T.Wahlers, S. Salehi-Gelani, “Artificial vascular implants from bacterial cellulose:preliminary results of small arterial substitutes”. Cellulose., vol. 16 no. 5, pp. 877- 885, 2009. Referenciado en 318

[73] H. Backdahla, G. Helenius, A. Bodina, U. Nannmarkc, B. Jahanssonc, B. Risberg,P. Gatenholm. “Mechanical properties of bacterial cellulose and interactionswith smooth muscle cells”. Biomaterials., vol. 27 no. 9, pp. 2141 - 2149. 2006.Referenciado en 318

[74] P. Charpentier, A. Maguire, W. Wan. “Surface modification of polyester to producea bacterial cellulose-based vascular prosthetic device”. Applied Surface Science.,vol. 252 no. 18, pp. 6360 - 6367, 2006. Referenciado en 318

[75] F. Andrade, R. Costa, L. Domingues, R. Soares, M. Gama. “Improving bacterialcellulose for blood vessel replacement: Functionalization with a chimeric proteincontaining a cellulose-binding module and an adhesion peptide”. Acta Biomaterialia.,vol. 6 no. 10, pp. 4034 - 4041, 2010. Referenciado en 318

[76] A. Lloyd. “Bacterial cellulose scaffolds for cartilage repair: Tissue engineering”.Materials Today., vol. 7 no. 11, 28, 2004. Referenciado en 318

[77] A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D. Kaplan, M. Brittberg,M. Gatenhol. “Bacterial cellulose as a potential scaffold for tissue engineering ofcartilage”. Biomaterials., vol. 26 no. 4, pp. 419 - 431, 2005. Referenciado en 318

[78] N. Sanchavanakit, W. Sangrungraungroj, R. Kaomongkolgit, T. Banaprasert,P. Pavasant, M. Phisalaphong. “Growth of Human Keratinocytes and Fibroblastson Bacterial Cellulose Film”. Biotechnology Progress., vol. 22 no. 4, 1194 - 1199,2006. Referenciado en 318

[79] S. Concaro, B. Aase, P. Gatenholm, M. Brittberg, “Bacterial cellulose as a potentialmaterial for meniscal tissue engineering”. Osteoarthritis and Cartilage.,vol. 15 no. B, pp. B75 - B75, 2007. Referenciado en 318

[80] Z. Wang, Y. Jia,Y. Shi, D. Cong, Y. Chen, S. Jia, Y. Zhou, “Research on characterizationand biocompatibility of nano-bacterial cellulose membrane”. ChemicalJournal of Chinese Universities., vol. 30 no. 8, pp. 1553 - 1558, 2009.Referenciado en 318

[81] H. Zahedmanesh, P. Gatenholm, C. Lally. “Bacterial cellulose: A potential vasculargraft and tissue engineering scaffold”. Proceedings of the ASME SummerBioengineering Conference 2009, SBC2009, PART A., no. 2009.Referenciado en 318

[82] B. Brackmann, A. Bodin, M. Akeson, P. Gatenholm, A. Enejder. “Visualizationof the cellulose biosynthesis and cell integration into cellulose scaffolds”. Biomacromolecules.,vol. 11 no. 3, pp. 542 - 548, 2010. Referenciado en 318

[83] N. Nwe, T. Furuike, H. Tamura. “Selection of a biopolymer based on attachment,morphology and proliferation of fibroblast NIH/3T3 cells for the development ofa biodegradable tissue regeneration template: Alginate, bacterial cellulose andgelatin”. Process Biochemistry., 45 no. 4, pp. 457 - 466, 2010. Referenciado en318

[84] A. Nakayama, A. Kakugo, J.P. Gong, Y. Osada, M. Takai, T. Erata, S. Kawano.“High Mechanical Strengh Double-Network Hydrogel with Bacterial Cellulose”.Advanced Functional Materials., vol. 14 no. 11, pp. 1124 - 1128, 2004.Referenciado en 318

[85] L. Hong, Y.Wang, S. Jia, Y. Huang, C. Gao, Y.Wan. “Hydroxyapatite/bacterialcellulose composites synthesized via a biomimetic route”. Materials Letters., vol.60 no. 13-14, pp. 1710 - 1713, 2006.Referenciado en 318

[86] Y. Wan, Y. Huang, C. Yuan, S. Raman, Y. Zhu, H. Jiang, F. He, C. Gao,“Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites forbiomedical applications”. Materials Science and Engineering: C ., 27 no. 4, pp.855 - 864, 2007. Referenciado en 318

[87] B. Rambo, D. Recouvreux, C. Carminatti, A. Pitlovanciv, R. António, L. Porto.“Template assisted synthesis of porous nanofibrous cellulose membranes for tissueengineering”. Materials Science and Engineering: C, 28 no. 4, pp. 549- 554, 2008.Referenciado en 318

[88] C. Grande, F. Torres, C. Gomez, M. Bañó. “Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications”. Acta Biomaterialia., vol. 5 no.5, pp. 1605 - 1615, 2009. Referenciado en 318

[89] J. Li, Y. Wan, L. Li, H. Liang, J. Wang. “Preparation and characterization of2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineeringscaffolds”. Materials Science and Engineering: C ., vol. 29 no. 5, pp. 1635- 1642,2009. Referenciado en 318

[90] S. Zhang, G. Xiong, G., F. He, Y. Huang, Y. Wang, Y. Wan. “Characterisationof hydroxyapatite/bacterial cellulose Nanocomposites“. Polymers and PolymerComposites., vol, 17 no. 6, pp. 353 - 358, 2009. Referenciado en 318

[91] K. Zimmermann, J. Leblanc, K. Sheets, R. Fox, P. Gatenholm. “Biomimeticdesign of a bacterial cellulose/hydroxyapatite nanocomposite for bone healingapplications“. Materials Science and Engineering: C , vol 31 no. 1, pp. 43- 49,2011. Referenciado en 318

[92] Q. Zheng, T. Xi, Y. Chen, Z.Wang, Y.Wan, C. Gao. “Cytocompatibility of nanohydroxyapatite/bacterial cellulose nanocomposites and its residues“. Journal ofClinical Rehabilitative Tissue Engineering Research., vol 14 no. 3, pp. 405 - 409,2010. Referenciado en 318

[93] M. Zaborowska, A. Bodin, H. Backdahl, J. Popp, A. Goldstein, P. Gatenholm.“Microporous bacterial cellulose as a potential scaffold for bone regeneration“.Acta Biomaterialia., vol. 6 no. 7, pp. 2540 - 2547, 2010. Referenciado en 318

[94] N. Yin, S. Chen, Y. Ouyang, L. Tang, Z. Li, J. Yang, Q. Xu, H.Wang. “Biomimeticmineralization synthesis of hydroxyapatite bacterial cellulose nanocomposites“.Progress in Natural Science: Materials International, vol. 21 no. 6, pp. 472 - 477,2011. Referenciado en 318

[95] Y. Ouyang, N. Yin, S. Chen, L. Tang, H. Wang. “Synthesis and characterizationof bacterial cellulose / calcium silicate composites“. Advanced MaterialsResearch.,vol. 476-478, pp. 863 - 866, 2012. Referenciado en 318

[96] H. Jia, Y. Jia, J. Wang, Y. Hu, Y. Zhang, S. Jia. “Potentiality of bacterialcellulose as the scaffold of tissue engineering of cornea“. Proceedings of the 20092nd International Conference on Biomedical Engineering and Informatics, BMEI2009 . no. 2009. Referenciado en 318

[97] H. Jia, Y. Jia, J. Wang, Y. Hu, Y. Zhang, Y. Zhou, P. Wang. “Method to constructtissue engineering corneal stroma with bacterial cellulose and its evaluation“.Journal of Jilin University, Medicine Edition., vol. 36 no. 2, pp. 303 - 307, 2010.Referenciado en 318

[98] J. Wang, C. Gao, Y. Zhang, Y. Wan. “Preparation and in vitro characterizationof BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial“.Materials Science and Engineering: C ., vol. 30 no. 1, pp. 214 - 218 no.2010. Referenciado en 318

[99] H. Ammon, W. Ege, M. Oppermann, W. Gopel, S. Eisele. “Improvement in thelong-term stability of an amperometric glucose sensor system by introducing acellulose membrane of bacterial origin“. Analytical Chemistry., vol. 67 no. 2, pp.466 - 471, 1995. Referenciado en 318

[100] K. Watanabe, Y. Eto, S. Takano, S. Nakamori, S. Yamanaka. “A New BacterialCellulose Substrate for Mammalian Cell Culture“. Cytotechnology., vol. 13 no. 2,pp. 107 - 114, 1997. Referenciado en 318

[101] S. Wu, Y. Lia. “Application of bacterial cellulose pellets in enzyme immobilization“.Journal of Molecular Catalysis B: Enzymatic. , vol. 54 no. 3-4, pp. 103 -108, 2008. Referenciado en 318

[102] C. Zhijiang, Y. Guang. “Bacterial cellulose/collagen composite: Characterizationand first evaluation of cytocompatibility“. Journal of Applied Polymer Science.,vol. 120 no. 5, pp. 2938 - 2944, 2011. Referenciado en 318

[103] J.Wang, Y.Wan, H. Luo, C. Gao, Y. Huang. “Immobilization of gelatin on bacterialcellulose nanofibers surface via crosslinking technique“. Materials Scienceand Engineering C ., vol. 32 no. 3, pp. 536 - 541, 2012. Referenciado en 318

[104] A. Stoica-Guzun, M. Stroescu, F.Tache, T. Zaharescu, E. Grosu“. Effect ofelectron beam irradiation on bacterial cellulose membranes used as transdermaldrug delivery systems“. Nuclear Instruments and Methods in Physics ResearchSection B: Beam Interactions with Materials and Atoms, vol. 265 no. 1, pp. 434- 438, 2007.

[105] R. Mori, T. Nakai, K. Enomoto, Y. Uchio, K. Yoshino“. Increased antibioticrelease from a bone cement containing bacterial cellulose“Clin Orthop Relat Res.,vol. 469 no. 2, pp. 600 - 606, 2011. Referenciado en 318

[106] M. Amin, A. Abadi, N. Ahmad, H. Katas, J. Jamal. “Bacterial cellulose filmcoating as drug delivery system: Physicochemical, thermal and drug release properties“.Sains Malaysiana., vol. 41 no. 5, pp. 561 - 568, 2012.Referenciado en 318

[107] E. Trovatti, C. Freire, P. Pinto, I. Almeida, P. Costa, A. Silvestre, C. Neto,C. Rosado. “Bacterial cellulose membranes applied in topical and transdermaldelivery of lidocaine hydrochloride and ibuprofen: In vitro diffusion studies“. InternationalJournal of Pharmaceutics., vol. 435 no. 1, pp. 83 - 87, 2012.Referenciado en 318

[108] W. Yao, X. Wu, J. Zhu, B. Sun, Y. Zhang, C. Miller. “Bacterial cellulose membrane- A new support carrier for yeast immobilization for ethanol fermentation“.Process Biochemistry., vol. 46 no. 10, pp. 2054 - 2058, 2011. Referenciado en 318

[109] N. Ton, V. Le. “Application of immobilized yeast in bacterial cellulose to therepeated batch fermentation in wine-making“. International Food Research Journal.,vol. 18 no. 3, pp. 983 - 987, 2011. Referenciado en 318

[110] C. Legnani, C. Vilani, V. Calil, H. Barud, W. Quirino, C. Achete, S. Ribeiro,M. Cremona, “Bacterial cellulose membrane as flexible substrate for organiclight emitting devices“. Thin Solid Films., vol. 517 no. 3, pp. 1016 - 1020, 2008.Referenciado en 318

[111] X. Li, S. Chen, W. Hu, S. Shi, W. Shen, X. Zhang, H. Wang. “In situ synthesisof CdS nanoparticles on bacterial cellulose nanofibers“. Carbohydrate Polymers.,vol., 76 no. 4, pp. 509 - 512, 2009. Referenciado en 319

[112] W. Shen, S. Chen, S. Shi, X. Li, X. Zhang, W. Hu, H. Wang. “Adsorption of Cuno. II) and Pb no. II) onto diethylenetriamine-bacterial cellulose“. CarbohydratePolymers., vol. 75 no. 1, pp. 110 - 114, 2009. Referenciado en 319

[113] D. Muller, J. Mandelli, J. Marins, B. Soares, L. Porto, C. Rambo, G. Barra.“Electrically conducting nanocomposites: preparation and properties of polyaniline,PAni)-coated bacterial cellulose nanofibers, BC)“. Cellulose., vol. 19 no. 5,pp. 1645 - 1654, 2012. Referenciado en 319

[114] S. Ummartyotin, J. Juntaro, M. Sain, H. Manuspiya. “Development of transparentbacterial cellulose nanocomposite film as substrate for flexible organic lightemitting diode, OLED) display“. Industrial Crops and Products., vol. 35 no. 1,pp. 92 - 97, 2012. Referenciado en 319

[115] H. Take, S. Yamanaka, M. Ishihara, K. Yoshino. “Anode performance of pyrolyzedbacterial cellulose in secondary lithium-ion batteries and the effect of addedmetal phthalocyanines“. Japanese Journal of Applied Physics, Part 1 ., vol. 41no. 5A, pp. 3137 - 3139, 2002. Referenciado en 319

[116] B. Evans, H. O´Neill, V. Malyvanh, I. Lee, J. Woodward. “Palladiumbacterialcellulose membranes for fuel cells“. Biosensors and Bioelectronics., vol. 18 no. 7,pp. 917 - 922, 2003. Referenciado en 319

[117] M. Mukai, D. Tatsumi, T. Matsumoto. “Evaluation of bacterial cellulose membranefor fuel cells“. Polymer Preprints., 55 no. 2, 2006. Referenciado en 319

[118] U. Patel, S. Suresh. “Complete dechlorination of pentachlorophenol using palladizedbacterial cellulose in a rotating catalyst contact reactor“. Journal of Colloidans Interface Science., vol. 319 no. 15, pp. 462 - 469, 2008. Referenciado en 319

[119] J. Yang, D. Sun, J. Li, X. Yang, J. Yu, Q. Hao, W. Liu, J. Liu, Z. Zou, J. Gu.“In situ deposition of platinum nanoparticles on bacterial cellulose membranesand evaluation of PEM fuel cell performance“. Electrochimica Acta., vol. 54 no.26, pp. 6300 - 6305, 2009. Referenciado en 319

[120] D. Sun, J. Yang, J. Li, J. Yu, X. Xu, X. Yang. “Novel Pd-Cu/bacterial cellulosenanofibers: Preparation and excellent performance in catalytic denitrification“.Applied Surface Science., vol. 256 no. 7, pp. 2241 - 2244, 2010.Referenciado en 319

[121] G. Jiang, J. Qiao, F. Hong. “Application of phosphoric acid and phytic aciddopedbacterial cellulose as novel proton-conducting membranes to PEMFC“.International Journal of Hydrogen Energy., vol. 37 no. 11, pp. 9182 - 9192 no.2012. Referenciado en 319

[122] P. Wanichapichart, S. Kaewnopparat, K. Buaking y W. Puthai. “Characterizationof cellulose membranes produced by Acetobacter xyllinum“. SongklanakarinJournal of Science and Technology., vol. 24, pp. 855 - 862, 2002.Referenciado en 319

[123] A. Krystynowicz, S. Bielecki, W. Czaja, M. Rzyska, J. Tramper, P.Jacek. “Applicationof bacterial cellulose for clarification of fruit juices“. Progress in Biotechnology.,vol. 17, pp. 323 - 327, 2000. Referenciado en 319

[124] L. Pandey, C. Saxena, V. Duvey. “Studies on pervaporative characteristics ofbacterial cellulose membrane“. Separation and Purification Technology., vol. 3,pp. 213 - 218, 2005. Referenciado en 319

[125] V. Duvey, L. Pandey, C. Saxena. “Pervaporative separation of ethanol/waterazeotrope using a novel chitosan-impregned bacterial cellulose membrane andchitosan-poly no. vinil alcohol) blends“. Journal of Membrane Science., vol. 251,pp. 131 - 136, 2005. Referenciado en 319

[126] J. Tiongson, E. Bugante, E. Del Rosario. “Development of ultrafiltration membranesfrom bacterial cellulose, nata de coco) for the separation of mango volatileorganic compounds“. Philippine Agricultural Scientist., vol. 85 no. 3, pp. 256 -265, 2002. Referenciado en 319

[127] H. Shibazaki, S. Kuga, F. Onabe, M. Usuda. “Bacterial Cellulose as a SeparationMedium“. Journal of Applied Polymer Science., vol. 50 no. 6, pp. 965 - 969,1993. Referenciado en 319

[128] A. Sokolnicki, R. Fisher, T. Harrah, D. Kaplan, “Permeability of bacterialcellulosemembranes“.Journal of Membrane Science., vol. 272 no. 1-2, pp. 15 - 27,2006. Referenciado en 319

[129] J. George, K. Ramana, S. Sabapathy, J. Jagannath, A. Bawa “Characterizationof chemicallytreatedbacterial, Acetobacterxylinum) biopolymer: Some thermomechanicalproperties“.International Journal of Biological Macromolecules., vol. 37no. 4, pp. 189 - 194, 2005. Referenciado en 319

[130] C. Clasen, B. Sultanova, T. Wilhelms, P. Heisig, W. Kulicke. “Effects of DifferentDrying Processes on the Material Properties of Bacterial Cellulose Membranes”Macromolecular Symposia., vol. 244, pp. 48 - 58, 2006. Referenciado en319

[131] H. Barud, A. Junior, D. Santos, R. De Assunção, C. Meireles, D. Cerqueira, G.Filho, C. Ribeiro, Y. Messadeq, S. Ribeiro. “Thermal behavior of cellulose acetateproduced from homogeneous acetylation of bacterial cellulose“. ThermochimicaActa. , vol. 471 no. 1-2, pp. 61 - 69, 2008. Referenciado en 319

[132] D. Kim, Y. Nishiyama, Kuga, S. “Surface acetylation of bacterial cellulose“.Cellulose., vol. 9, pp. 361 - 367, 2002. Referenciado en 320

[133] O. Saibuatong, M. Phisalaphong. “Novo aloe vera - bacterial cellulose compositefillm from biosynthesis“. Carbohydrate Polymers., vol. 792, pp. 455 - 460, 2010.Referenciado en 320