Un modelo de optimización analítica para el diseño de centros de distribución baja políticas de alamacenamiento basadas en clases

Luis F. Cardona, Leonardo Rivera, Héctor Jairo Martínez

Resumen


Este artículo estudia el impacto de las políticas de alamacenamiento basadas en clases en el diseño de centros de distribución . Se asume una operación con una sola entrada y salida para los montacargas, los montacargas pueden transportar una unidad de carga al tiempo, y la política de almacenamiento es basada en la clasificación ABC de los productos. Se presenta un modelo de optimización no lineal para minimizar el valor esperado de la distancia por viaje del montacargas — un estimativo del costo de manejo de materiales — y se resuelve utilizando métodos analíticos. La contribución mas revelevante de este artículo es una demonstración matemática de que no independiente de la curva de distribución de la rotación de inventario de los productos, el diseño óptimo del centro de distribución es el mismo. Finalmente, el análisis de sensibilidad muestra que pequeñas desviaciones del desiño óptimo no afecta significativamente el costo de manejo de materiales.


Palabras clave


distribución de bodegas; diseño de almacenes; políticas de almacenamiento; optimización no lineal

Texto completo:

PDF (English)

Referencias


B. Rouwenhorst, B. Reuter, V. Stockrahm, G. van Houtum, R. Mantel, and W. Zijm, “Warehouse design and control: Framework and literature review,” European Journal of Operational Research, vol. 122, no. 3, pp. 515 – 533, 2000. 222

G. Richards, Warehouse management: A complete guide to improving efficiency and minimizing costs in the modern warehouse. Kogan Page, 2011. 222

R. L. Francis, “On some problems of rectangular warehouse design and layout,” The Journal of Industrial Engineering, vol. 18, no. 10, pp. 595–604, 1967. 222, 223

G. Cormier and E. A. Gunn, “A review of warehouse models,” European Journal of Operational Research, vol. 58, no. 1, pp. 3 – 13, 1992. 222

Y. Bassan, Y. Roll, and M. J. Rosenblatt, “Internal layout design of a warehouse,” AIIE Transactions, vol. 12, no. 4, pp. 317–322, 1980. 222, 223

J. Gu, M. Goetschalckx, and L. F. McGinnis, “Research on warehouse design and performance evaluation: A comprehensive review,” European Journal of Operational Research, vol. 203, no. 3, pp. 539–549, 2010. 222, 223

K. R. Gue and R. D. Meller, “Aisle configurations for unit-load warehouses,” IIE Transactions, vol. 41, no. 3, pp. 171 – 182, 2009. 222

L. F. Cardona, L. Rivera, and H. J. Martínez, “Analytical study of the fishbone warehouse layout,” International Journal of Logistics Research and Applications, vol. 15, no. 6, pp. 365–388, 2012. 222

J. Xiao and L. Zheng, “A correlated storage location assignment problem in a single-block-multi-aisles warehouse considering bom information,” International Journal of Production Research, vol. 48, no. 5, pp. 1321 – 1338, 2010. 222

Y. Yu, R. B. de Koster, and X. Guo, “Class-Based Storage with a Finite Number of Items: Using More Classes is not Always Better,” Production and Operations Management, no. August 2015, pp. 1235–1247, 2015. 223

L. Hsieh and L. Tsai, “The optimum design of a warehouse system on order picking efficiency,” International Journal of Advanced Manufacturing Technology , vol. 28, no. 5-6, pp. 626–637, MAR 2006. 223

G. Zhang and K. Lai, “Combining path relinking and genetic algorithms for the multiple-level warehouse layout problem,” European Journal of Operational research, vol. 169, no. 2, pp. 413–425, MAR 1 2005. 223

R. Ballou, Business Logistics: Supply Chain Management. Prentice Hall, 2004. 223

R. L. Francis and J. A. White, “Facility layout and location — an analytical approach,” International Journal of Production Research, vol. 13, no. 2, pp. 219–219, 1975. 223

L. M. Pohl, R. D. Meller, and K. R. Gue, “Turnover-based storage in nontraditional unit-load warehouse designs,” IIE Transactions, vol. 43, no. 10, pp. 703 – 720, 2011. 223, 224, 225

X. Guo, Y. Yu, and R. B. D. Koster, “Impact of required storage space on storage policy performance in a unit-load warehouse,” International Journal of Production Research, vol. 54, no. 8, pp. 2405–2418, 2016. 223

L. M. Thomas and R. D. Meller, “Analytical models for warehouse configuration,” IIE Transactions, vol. 46, no. 9, pp. 928–947, 2014. 224

——, “Developing design guidelines for a case-picking warehouse,” International Journal of Production Economics, vol. 170, Part C, pp. 741 – 762, 2015. 224

K. J. Roodbergen, I. F. Vis, and G. D. T. Jr, “Simultaneous determination of warehouse layout and control policies,” International Journal of Production Research, vol. 53, no. 11, pp. 3306–3326, 2015. 224

T. Larson, H. March, and A. Kusiak, “A heuristic approach to warehouse layout with class-based storage,” IIE Transactions, vol. 29, no. 4, pp. 337– 348, 1997. 224

M. Celik and H. Sural, “Order picking under random and turnover-based storage policies in fishbone aisle warehouses,” IIE Transactions, vol. 46, no. 3, pp. 283–300, 2014. 224

T. Le-Duc and R. M. B. M. De Koster, “Travel distance estimation and storage zone optimization in a 2-block class-based storage strategy warehouse,” International Journal of Production Research, vol. 43, no. 17, pp. 3561 – 3581, 2005. 224

S. S. Rao and G. K. Adil, “A mathematical model for optimal partitions of warehouse storage space based on turnover density,” in 2011 Fifth Asia Modelling Symposium. IEEE, 2011, pp. 133–137. 227




DOI: http://dx.doi.org/10.17230/ingciencia.12.24.10

Enlaces refback

  • No hay ningún enlace refback.




Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Ingeniería y Ciencia | ing.cienc.

  • ISSN: 1794-9165
  • e-ISSN: 2256-4314