Pollutant Remotion and Growth of Scenedesmus sp. on Wastewater from Tannery. A Comparison Between Free and Immobilized Cells

Main Article Content

A G Rosales
C D Rodríguez
M Ballen-Segura http://orcid.org/0000-0003-4998-8278


Chromium, cell immobilization, microalgae, phycoremediation, tannery, BOD, COD


Tannery wastewater are a public health and ecosystem hazard, due to the high concentration of contaminants such as chrome, sulfides and others. One way to treat these waters is by the use of microorganisms such as microalgae due to their capacity to use the inorganic compounds, as well as to accumulate metals and other contaminant substances; ability that could be improve with cellular immobilization. In this paper, the growth and removal of nitrogen, phosphorus and chrome by the microalgae Scenedesmus sp. were evaluated, comparing the rates between free and immobilized cells in a Loofa matrix. In this way, a higher growth in the free cells was obtained, compared to the immobilized ones. However, there were no significant differences between removals of contaminants. In both cases, higher reductions than 90% for NO3 , NH+4, PO34 and Chromium, as well as a significant reduction in BOD and COD (> 97%) were obtained, probably by a synergy effect between algae and bacteria presents in the culture. Finally, lipids in both cases were higher than 20%, showing that this biomass could present a high potential as a raw material for the generation of biodiesel. 


Download data is not yet available.
Abstract 735 | PDF (Español) Downloads 514


M. Azom, K. Mahmud, S. Yahya, A. Sontu, and S. Himon, “Environmental impact assessment of tanneries: a case study of hazaribag in bangladesh,” International Journal of Environmental Science and Development, vol. 3, no. 2, p. 152, 2012. [Online]. Available: http://dx.doi.org/10.7763/IJESD. 2012.V3.206

O. Akpor and B. Muchie, “Environmental and public health implications of wastewater quality,” African Journal of Biotechnology, vol. 10, no. 13, pp. 2379–2387, 2011. [Online]. Available: http://doi.org/10.5897/AJB10.1797

M. Chowdhury, M. Mostafa, T. K. Biswas, and A. K. Saha, “Treatment of leather industrial effluents by filtration and coagulation processes,” Water Resources and Industry, vol. 3, pp. 11–22, 2013. [Online]. Available: http://doi.org/10.1016/j.wri.2013.05.002

R. Suthanthararajan, E. Ravindranath, K. Chits, B. Umamaheswari, T. Ramesh, and S. Rajamam, “Membrane application for recovery and reuse of water from treated tannery wastewater,” Desalination, vol. 164, no. 2, pp. 151–156, 2004. [Online]. Available: http://doi.org/10.1016/S0011-9164(04) 00174-2

Q. Imran, M. Hanif, M. Riaz, S. Noureen, T. Ansari, and H. Bhatti, “Coagulation/flocculation of tannery wastewater using immobilized chemical coagulants,” Journal of applied research and technology, vol. 10, no. 2, pp. 79–86, 2012. [Online]. Available: http://www.scielo.org.mx/pdf/jart/v10n2/ v10n2a1.pdf

N. N. Rao, K. M. Somasekhar, S. N. Kaul, and L. Szpyrkowicz, “Electrochemical oxidation of tannery wastewater,” Journal of Chemical Technology and Biotechnology, vol. 76, no. 11, pp. 1124–1131, 2001. [Online]. Available: http://doi.org/10.1002/jctb.493

Z. Song, C. Williams, and R. Edyvean, “Treatment of tannery wastewater by chemical coagulation,” Desalination, vol. 164, no. 3, pp. 249–259, 2004. [Online]. Available: http://doi.org/10.1016/S0011-9164(04)00193-6

K. Ajayan and M. Selvaraju, “Heavy metal induced antioxidant defense system of green microalgae and its effective role in phycoremediation of tannery effluent,” Pakistan journal of biological sciences, vol. 15, no. 22, pp. 1056–1062, 2012.

M. A. Borowitzka, Limits to growth. Berlin, Heidelberg: Springer, 1998, pp. 203–226.

M. Martínez, S. Sánchez, J. Jimenez, F. El Yousfi, and L. Munoz, “Nitrogen and phosphorus removal from urban wastewater by the microalga scenedesmus obliquus,” Bioresource technology, vol. 73, no. 3, pp. 263–272, 2000. [Online]. Available: http://doi.org/10.1016/S0960-8524(99)00121-2

J. Shi, B. Podola, and M. Melkonian, “Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study,” Journal of Applied Phycology, vol. 19, no. 5, pp. 417–423, 2007. [Online]. Available: http://doi.org/10.1007/s10811-006-9148-1

N. Abdel-Raouf, A. Al-Homaidan, and I. Ibraheem, “Microalgae and wastewater treatment,” Saudi Journal of Biological Sciences, vol. 19, no. 3, pp. 257–275, 2012. [Online]. Available: http://doi.org/10.1016/j.sjbs.2012.04.005

R. Richards and B. Mullins, “Using microalgae for combined lipid production and heavy metal removal from leachate,” Ecological modelling, vol. 249, pp. 59–67, 2013. [Online]. Available: http://doi.org/10.1016/j.ecolmodel.2012.07.004

K. V. Ajayan, M. Selvaraju, P. Unnikannan, and P. Sruthi, “Phycoremediation of tannery wastewater using microalgae scenedesmus species,” International journal of phytoremediation, vol. 17, no. 10, pp. 907–916, 2015. [Online]. Available: http://doi.org/10.1080/15226514.2014.989313

M. Ballen-Segura, L. Hernández Rodríguez, D. Parra Ospina, A. Vega Bolaños, and K. Pérez, “Using scenedesmus sp. for the phycoremediation of tannery wastewater,” Tecciencia, vol. 11, no. 21, pp. 69–75, 2016. [Online]. Available: http://dx.doi.org/10.18180/tecciencia.2016.21.11

H. Wang, H. Xiong, Z. Hui, and X. Zeng, “Mixotrophic cultivation of chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids,” Bioresource Technology, vol. 104, pp. 215–220, 2012. [Online]. Available: http://doi.org/10.1016/j.biortech.2011.11.020

E. Eroglu, S. M. Smith, and C. L. Raston, Application of various immobilization techniques for algal bioprocesses. Cham: Springer, 2015, vol. 2, pp. 19–44. [Online]. Available: https://doi.org/10.1007/978-3-319-16640-7_2

N. Zamani, M. Noshadi, S. Amin, A. Niazi, and Y. Ghasemi, “Effect of alginate structure and microalgae immobilization method on orthophosphate removal from wastewater,” Journal of applied phycology, vol. 24, no. 4, pp. 649–656, 2012. [Online]. Available: http://doi.org/10.1007/s10811-011-9682-3

N. Akhtar, A. Saeed, and M. Iqbal, “Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium,” Bioresource Technology, vol. 88, no. 2, pp. 163–165, 2003. [Online]. Available: http://doi.org/10.1016/S0960-8524(02)00289-4

B.-Y. Chen, C.-Y. Chen, W.-Q. Guo, H.-W. Chang, W.-M. Chen, D.-J. Lee, C.-C. Huang, N.-Q. Ren, and J.-S. Chang, “Fixed-bed biosorption of cadmium using immobilized scenedesmus obliquus cnwn cells on loofa (luffa cylindrica) sponge,” Bioresource technology, vol. 160, pp. 175–181, 2014. [Online]. Available: http://doi.org/10.1016/j.biortech.2014.02.006

A. Saeed and M. Iqbal, “Immobilization of blue green microalgae on loofa sponge to biosorb cadmium in repeated shake flask batch and continuous flow fixed bed column reactor system,” World Journal of Microbiology and Biotechnology, vol. 22, no. 8, pp. 775–782, 2006. [Online]. Available: http://doi.org/10.1007/s11274-005-9103-3

K. R. Pérez Silva, A. M. Vega Bolaños, L. C. Hernández Rodríguez, D. A. Parra Ospina, and M. Ballen-Segura, “Uso de scenedesmus para la remoción de metales pesados y nutrientes de aguas residuales para la industria textil,” Ingeniería solidaria, vol. 12, no. 20, pp. 95–105, 2016. [Online]. Available: http://dx.doi.org/10.16925/in.v19i20.1418

J. Folch, M. Lees, and G. Sloane-Stanley, “A simple method for the isolation and purification of total lipids from animal tissues,” J biol Chem, vol. 226, no. 1, pp. 497–509, 1957. [Online]. Available: http://aufsi.auburn.edu/recommendedmethods/05B01c03a.pdf

K. I. Reitan, J. R. Rainuzzo, and Y. Olsen, “Effect of nutrient limitation on fatty acid and lipid content of marine microalgae,” Journal of Phycology, vol. 30, no. 6, pp. 972–979, 1994. [Online]. Available: http://doi.org/10.1111/j.0022-3646.1994.00972.x

L. Xin, H. Hong-ying, G. Ke, and S. Ying-xue, “Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga scenedesmus sp,” Bioresource technology, vol. 101, no. 14, pp. 5494–5500, 2010. [Online]. Available: http://doi.org/10.1016/j.biortech.2010.02.016

G. Durai and M. Rajasimman, “Biological treatment of tannery wastewatera review,” Journal of Environmental science and Technology, vol. 4, no. 1, pp. 1–17, 2011. [Online]. Available: http://doi.org/10.3923/jest.2011.1.17

M. de Ambiente Y Desarrollo Sostenible, “Resolución 0631,” p. 40, 18 de Abril 2015.

I. Moreno-Garrido, “Microalgae immobilization: current techniques and uses,” Bioresource technology, vol. 99, no. 10, pp. 3949–3964, 2008. [Online]. Available: http://doi.org/10.1016/j.biortech.2007.05.040

P. K. Robinson, “Immobilized algal technology for wastewater treatment purposes,” Wastewater treatment with algae, pp. 1–16, 1998. [Online]. Available: http://doi.org/10.1007/978-3-662-10863-5_1

B. L. Strand, Y. A. Morch, and G. Skjak-Braek, “Alginate as immobilization matrix for cells,” Minerva biotecnologica, vol. 12, no. 4, p. 223, 2000.

N. Akhtar, J. Iqbal, and M. Iqbal, “Enhancement of lead (ii) biosorption by microalgal biomass immobilized onto loofa (luffa cylindrica) sponge,” Engineering in life sciences, vol. 4, no. 2, pp. 171–178, 2004. [Online]. Available: http://doi.org/10.1002/elsc.200420019

C. Garbisu, D. O. Hall, and J. L. Serra, “Removal of phosphate by foamimmobilized phormidium laminosum in batch and continuousflow bioreactors,” Journal of Chemical Technology and Biotechnology, vol. 57, no. 2, pp. 181–189, 1993. [Online]. Available: http://doi.org/10.1002/jctb.280570214

I. Urrutia, J. L. Serra, and M. J. Llama, “Nitrate removal from water by scenedesmus obliquus immobilized in polymeric foams,” Enzyme and Microbial Technology, vol. 17, no. 3, pp. 200–205, 1995. [Online]. Available: http://doi.org/10.1016/0141-0229(94)00008-F

L. Travieso, F. Benitez, P. Weiland, E. Sanchez, R. Dupeyron, and A. Dominguez, “Experiments on immobilization of microalgae for nutrient removal in wastewater treatments,” Bioresource Technology, vol. 55, no. 3, pp. 181–186, 1996. [Online]. Available: http://doi.org/10.1016/0960-8524(95)00196-4

L. Travieso, R. Canizares, R. Borja, F. Benitez, A. Dominguez, and V. Valiente, “Heavy metal removal by microalgae,” Bulletin of environmental contamination and toxicology, vol. 62, no. 2, pp. 144–151, 1999. [Online]. Available: http://doi.org/10.1007/s001289900853

S. Wium-Andersen, “The effect of chromium on the photosynthesis and growth of diatoms and green algae,” Physiologia plantarum, vol. 32, no. 4,pp. 308–310, 1974. [Online]. Available: http://doi.org/10.1111/j.1399-3054.1974.tb03141.x

S. Chinnasamy, A. Bhatnagar, R. W. Hunt, and K. Das, “Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications,” Bioresource technology, vol. 101, no. 9, pp. 3097–3105, 2010. [Online]. Available: http://doi.org/10.1016/j.biortech.2009.12.026

V. Pathak, D. Singh, R. Kothari, and A. Chopra, “Phycoremediation of textile wastewater by unicellular microalga chlorella pyrenoidosa,” Cell Mol Biol, vol. 60, no. 5, pp. 35–40, 2014. [Online]. Available: http://doi.org/10.14715/cmb/2014.60.5.7

C. Chacón, C. Andrade, C. Cárdenas, I. Araujo, and E. Morales, “Uso de chlorella sp. y scenedesmus sp. en la remoción de nitrógeno, fósforo y dqo de aguas residuales urbanas de maracaibo, venezuela,” Boletín del Centro de Investigaciones Biológicas, vol. 38, no. 2, 2004. [Online]. Available: http: //www.produccioncientificaluz.org/index.php/boletin/article/view/26

G. Tallec, J. Garnier, G. Billen, and M. Gousailles, “Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation,” Bioresource Technology, vol. 99, no. 7, pp. 2200–2209, 2008. [Online]. Available: http://doi.org/10.1016/j.biortech.2007.05.025

M. Giordano and J. A. Raven, “Nitrogen and sulfur assimilation in plants and algae,” Aquatic botany, vol. 118, pp. 45–61, 2014. [Online]. Available: http://doi.org/10.1016/j.aquabot.2014.06.012

A. Bhatnagar, S. Chinnasamy, M. Singh, and K. Das, “Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters,” Applied Energy, vol. 88, no. 10, pp. 3425–3431, 2011.[Online]. Available: http://doi.org/10.1016/j.apenergy.2010.12.064

M.-K. Ji, H.-S. Yun, Y.-T. Park, A. N. Kabra, I.-H. Oh, and J. Choi, “Mixotrophic cultivation of a microalga scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas co2 for biomass production,” Journal of environmental management, vol. 159, pp. 115–120, 2015. [Online]. Available: http://doi.org/10.1016/j.jenvman.2015.05.037

S. Yang, G. Liu, Y. Meng, P. Wang, S. Zhou, and H. Shang, “Utilization of xylose as a carbon source for mixotrophic growth of scenedesmus obliquus,” Bioresource technology, vol. 172, pp. 180–185, 2014. [Online]. Available: http://doi.org/10.1016/j.biortech.2014.08.122

F. Azam, T. Fenchel, J. G. Field, J. Gray, L. Meyer-Reil, and F. Thingstad, “The ecological role of water-column microbes in the sea,” Marine ecology progress series, pp. 257–263, 1983. [Online]. Available: http://www.jstor.org/stable/24814647

A. Malik, “Metal bioremediation through growing cells,” Environment international, vol. 30, no. 2, pp. 261–278, 2004. [Online]. Available: http://doi.org/10.1016/j.envint.2003.08.001

C. Das, K. Naseera, A. Ram, R. M. Meena, and N. Ramaiah, “Bioremediation of tannery wastewater by a salttolerant strain of chlorella vulgaris,” Journal of Applied Phycology, vol. 29, no. 1, pp. 235–243, 2017. [Online]. Available: http://doi.org/10.1007/s10811-016-0910-8

P. Subashini and P. Rajiv, “Chlorella vulgaris dpsf 01: A unique tool for removal of toxic chemicals from tannery wastewater,” African Journal of Biotechnology, vol. 17, no. 8, pp. 239–248, 2018. [Online]. Available: http://doi.org/10.5897/AJB2017.16359

C. Das, N. Ramaiah, E. Pereira, and K. Naseera, “Efficient bioremediation of tannery wastewater by monostrains and consortium of marine chlorella sp. and phormidium sp,” International journal of phytoremediation, vol. 20, no. 3, pp. 284–292, 2018. [Online]. Available: http://doi.org/10.1080/15226514.2017.1374338

S. Mehta and J. Gaur, “Use of algae for removing heavy metal ions from wastewater: progress and prospects,” Critical reviews in biotechnology, vol. 25, no. 3, pp. 113–152, 2005. [Online]. Available: http://doi.org/10.1080/07388550500248571

R. Muñoz and B. Guieysse, “Algalbacterial processes for the treatment of hazardous contaminants: a review,” Water research, vol. 40, no. 15, pp. 2799–2815, 2006. [Online]. Available: http://doi.org/10.1016/j.watres.2006.06.011

A. Ruiz-Marin, L. G. Mendoza-Espinosa, and T. Stephenson, “Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater,” Bioresource Technology, vol. 101, no. 1, pp. 58–64, 2010. Online]. Available: http://doi.org/10.1016/j.biortech.2009.02.076

A. F. Aravantinou, M. A. Theodorakopoulos, and I. D. Manariotis, “Selection of microalgae for wastewater treatment and potential lipids production,” Bioresource technology, vol. 147, pp. 130–134, 2013. [Online]. Available: http://doi.org/10.1016/j.biortech.2013.08.024

M. J. Griffiths, R. P. van Hille, and S. T. Harrison, “The effect of nitrogen limitation on lipid productivity and cell composition in chlorella vulgaris,” Applied microbiology and biotechnology, vol. 98, no. 5, pp. 2345–2356, 2014. [Online]. Available: http://doi.org/10.1007/s00253-013-5442-4

M. J. Griffiths, R. P. van Hille, and S. T. Harrison, “Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions,” Journal of Applied Phycology, vol. 24, no. 5, pp. 989–1001, 2012. [Online]. Available: http://doi.org/10.1007/s10811-011-9723-y

L. Brennan and P. Owende, “Biofuels from microalgae a review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and sustainable energy reviews, vol. 14, no. 2, pp. 557–577, 2010. [Online]. Available: http://doi.org/10.1016/j.rser.2009.10.009