Groundwater Physicochemical Characteristics’ Analysis of Chicú River Basin, Colombia, Using Hydrochemical Indicators and Multivariate Statistics

Main Article Content

Cristian Camilo López Velandia


Hydrochemical indicators, principal component analysis, hydrochemistry, groundwater, Chicú river basin, Colombia


The hydrochemical characteristics of an intramontane basin, located in the Bogotá Savannah, were evaluated using indicators and statistical methods, based on 10 monitoring wells physicochemical data, obtained during two sampling campaigns conducted in 2014, to establish the hydrochemical characteristics that are generated by the groundwater and sedimentary matrix interaction of the aquifer and determine the extracted groundwater quality conditions’ in the studied aquifer. To analyze the data, (1) hydrochemical indicators were applied to evaluate the groundwater and the sedimentary matrix interaction processes’ in the studied aquifer, which was corroborated by (2) principal components analysis, which allowed to disclose strong associations between the variables (Na+, Mg2+, Ca2+, SO42- y HCO3-), and T, pH y TDS variables influence on the hydrochemical process that govern the analyzed aquifer, in addition (3) physicochemical parameters were compared with the Colombian environmental regulations, referring to human consumption and irrigation use. As results, in water-sediment matrix was determined reverse cation exchange and minerals meteorization processes, present in the formations that conform the analyzed aquifer, likewise, the water samples obtained do not present quality characteristics that allow its use for irrigation or human consumption.


Download data is not yet available.
Abstract 1084 | PDF (Español) Downloads 685


M. Demiro_glu and J. Dowd, “The utility of vulnerability maps and GIS in groundwater management: A case study,” Turkish Journal of Earth Sciences, vol. 23, no. 1, pp. 80–90, 2014. [Online]. Available: http://journals.

V. Elumalai, K. Brindha, B. Sithole, and E. Lakshmanan, “Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area,” Environmental Science and Pollution Research, vol. 24, no. 12, pp. 11 601–11 617, 2017. [Online]. Available:

O. A. Solomon, “Qualitative Effects of Sand Filter Media in Water Treatment,” American Journal of Water Resources, vol. 3, no. 1, pp. 1–6, 2015.

J. González, C. Arboleda, and S. Botero, “Social Infrastructure Development: The Case for Private Participation in Potable Water Supply in Colombia,” PM World Journal, vol. IV, no. 10, pp. 1 – 15, 2015. [Online]. Available: 10/pmwj39-Oct2015-Gonzalez-Arboleda-Botero-second-edition.pdf

B. Helena, R. Pardo, M. Vega, E. Barrado, J. M. Fernandez, and L. Fernandez, “Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis,” Water Research, vol. 34, no. 3, pp. 807–816, 2000. [Online]. Available:

L. Belkhiri and T. S. Narany, “Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality,” Water Resources Management, vol. 29, no. 6, pp. 2073–2089, 2015. [Online]. Available: 1007/s11269-015-0929-7

E. Robles Burbano and J. S. Saenz Lozada, Estudio Hidrogeologico Cuantitativo de la Sabana de Bogotá. Hidrogeología de la cuenca del Río Chicú, Instituto Nacional de Investigaciones Geológico-Mineras, Ed. Bogotá D.C.: Ministerio de Minas y Energía, 1990.

Corporación Autónoma Regional de Cundinamarca, Plan de Manejo de agua subterránea en la sabana de Bogotá y Zona Crítica, Corporación Autónoma Regional de Cundinamarca, Ed., Bogotá, 2008. [Online]. Available:

J. O. Fatoba, O. A. Sanuade, O. S. Hammed, and W. W. Igboama, “The use of multivariate statistical analysis in the assessment of groundwater hydrochemistry in some parts of southwestern Nigeria,” Arabian Journal of Geosciences, vol. 10, no. 15, 2017. [Online]. Available:

S. M. Yidana, B. Banoeng-Yakubo, and T. M. Akabzaa, “Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana,” Journal of African Earth Sciences, vol. 58, no. 2, pp. 220–234, 2010. [Online]. Available:

H.-L. Yu and H.-J. Chu, “Recharge signal identification based on groundwater level observations,” Environmental Monitoring and Assessment, vol. 184, no. 10, pp. 5971–5982, 2012. [Online]. Available: https: //

R. Dehghanzadeh, N. Safavy Hir, J. Shamsy Sis, and H. Taghipour, “Integrated Assessment of Spatial and Temporal Variations of Groundwater Quality in the Eastern Area of Urmia Salt Lake Basin Using Multivariate Statistical Analysis,” Water Resources Management, vol. 29, no. 4, pp. 1351– 1364, 2014. [Online]. Available:

C. C. López Velandia, “Evaluación química ambiental de recurso hídrico subterráneo de la cuenca del Río Chicú, Sabana de Bogotá, Colombia,” Ph.D. dissertation, Universidad Nacional de La Plata, 2016. [Online]. Available:

Camara de Comercio de Bogotá, “Caracterización Económica y empresaria de diecinueve municipios de Cundinamarca.” Bogotá D.C., 2015. [Online]. Available:

O. De Bermoudes and F. Velandia, Hidrogeología regional de la Sabana de Bogotá, Universidad de Anquióquia, Universidad Industrial de Santander, and Universidad Nacional de Colombia, Eds. Medellin: Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010, no. January.

A. Lobo-Guerrero, “Geología e Hidrogeología de Santafé de Bogotá y su Sabana,” VII Jornadas Geotecnicas de la Ingenieria de Colombia, pp. 1–20, 1992. [Online]. Available: Geologia_hidrogeologia_Sabana_Bogota.pdf

C. C. López Velandia, “Análisis de la distribución espacial y temporal de la precipitación en la cuenca del río Chicú, Sabana de Bogotá, Colombia,” Perspectiva Geográfica, vol. 21, no. 1, pp. 63–90, 2016.

D. M. Montoya Arenas and G. A. Torres Reyes, Geología de la sabana de Bogotá, 2005. [Online]. Available: 2007/12/informe_geologia_sabana_bta.pdf

G. Pérez and A. Salazar, “Estratigrafía y facies del Grupo Guadalupe,” Geología Colombiana, vol. 10, pp. 7 – 86, 1978. [Online]. Available: http://

E. Robles Burbano, C. Martínez Reyes, G. Hincapié Vélez, and A. Alvarez Osejo, “Estudio hidrogeologico cuantitativo de la sabana de Bogotá sector tibito - Salto de Tequendama,” Santafé de Bogotá, p. 126, 1991.

American Public Health Association, American Water Works Association, and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, E. Rice, R. Baird, A. Eaton, and L. Clesceri, Eds., 2012.

J. Hem, “Study and Interpretation of the Chemical Characteristicas of Natural Water,” U.S Geological Survey Water, no. 2254, p. 264, 1985. [Online]. Available:

S. J. Fritz, “A Survey of Charge-Balance Errors on Published Analyses of Potable Ground and Surface Waters,” Ground Water, vol. 32, no. 4, pp. 539–546, jul 1994. [Online]. Available: 1745-6584.1994.tb00888.x

K. Murray and P. Wade, “Checking anion-cation charge balance of water quality analyses: Limitations of the traditional method for non-potable waters,” Water SA, vol. 22, no. 1, pp. 27–32, 1996. [Online]. Available: 42 [25] R. A. Freeze and J. A. Cherry, Groundwater. Prentice-Hall, 1979.

R Core Team, R: A Language and Environment for Statistical Computing, 2015, vol. 1. [Online]. Available:

W. Revelle, psych: Procedures for Personality and Psychological Research, Northwestern University, Ed., Evanston, Illinois, USA, 2017. [Online]. Available: org/r/psych-manual.pdf

M. Geyh, “Groundwater, saturated and unsaturated zone,” in Environmental isotopes in the hydrological cycle: principles and applications, W. Mook, Ed. Paris: International Hydrological Programme, 2000, vol. 4, no. 39, ch. 4, p. 200. [Online]. Available:

M. Jalali, “Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah basin in western Iran,” Environmental Monitoring and Assessment, vol. 130, no. 1-3, pp. 347– 364, 2007. [Online]. Available:

S. M. Yidana, D. Ophori, and B. Banoeng-Yakubo, “Hydrogeological and hydrochemical characterization of the Voltaian Basin: The Afram Plains area, Ghana,” Environmental Geology, vol. 53, no. 6, pp. 1213–1223, 2008. [Online]. Available:

M. Kumar, K. Kumari, A. Ramanathan, and R. Saxena, “A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India,” Environmental Geology, vol. 53, no. 3, pp. 553–574, 2007. [Online]. Available: https: //

M. J. Maier, Package REdaS, 0th ed., 2015. [Online]. Available:

IBM Knowledge Center, “KMO and Bartlett’s Test,” 2018.

S. Dray and A.-B. Dufour, “The ade4 Package: Implementing the Duality Diagram for Ecologists,” Journal of Statistical Software, vol. 22, no. 4, 2007. [Online]. Available:

Ministerio de la Protección Social and Ministerio de Ambiente Vivienda y Desarrollo Territorial, Resolucion 2115, Bogotá D.C., 2007. [Online]. Available: GestionIntegraldelRecursoHidrico/pdf/normativa/Res_2115_de_2007.pdf

Ministerio de Ambiente y Desarrollo Sostenible, “Decreto Único Reglamentario del Sector Ambiente y Desarrollo Sostenible 1076,” Bogotá D.C., p. 647, 2015. [Online]. Available:

I. Abrol, J. Yadav, and F. Massoud, “Water Quality and Crop Production,” in Salt-Affected Soils and their Management, Management and Conservation Service FAO Land and Water Development Division, Ed. Roma: Food and Agriculture Organization of the United Nations, 1988. [Online]. Available:

R. M. Garrels and F. T. Mackenzie, Origin of the Chemical Compositions of Some Springs and Lakes. American Chemical Society, 1967. [Online]. Available: