Modeling the Availability of a Repairable Series Structure with two Units

Main Article Content

Liliana Rodríguez-Figueredo
Álvaro Calvache-Archila


Work-mission-availability, semi-Markov model, Markov processes, integral equations system, repairable components


When there is a structure with two serial components where each one owns a life time that is distributed exponentially and both of the components are repairable, it is established a renovation process, in which both components need to be working in order for the operation of the structure. It is observed that the renovation process evidences a semimarkovian behavior and it is shown that through this one, its availability function is one of the inquiries of a system of integral equations that is solved by a numerical method designed for that purpose. The novelty in this article is that it is considered a process whose state space includes repair time, which is useful in engineering applications.


Download data is not yet available.
Abstract 43 | PDF (Español) Downloads 36


[1] H. Guo, H. Lia, and W. Zhao, “A new stochastic model for systems under general repairs,” IEEE Transactions on Reliability, vol. 56, no. 01, pp.40–49, 2007.

[2] H. Yi and L. Cui, “A study on repairable series systems with markov repairable units,” Springer Series in Reliability Engineering, pp. 121–157, Jan. 2018.

[3] F. Kayedpour, M. Amiri, M. Rafizadeh, and A. S. Nia, “Multiobjective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection,” Reliability Engineering & System Safety, vol. 160, pp. 11–20, Apr. 2017.

[4] R. Melo, C. Lara, and F. Jacobo, “Estimación de la confiabilidad disponibilidad-mantenibilidad mediante una simulación tipo monte carlo de un sistema de compresión de gas amargo durante la etapa de

ingeniería,” Tecnología Ciencia, vol. 2, no. 24, pp. 93–104, 2009.

[5] M. N. Alvarez, “Estudio de la fiabilidad de los sistemas reparables y desarrollo de un procedimiento de análisis multivariante,” Ph.D. dissertation, Escuela Técnica Superior de ingenieros Industriales, 2017.

[6] M. Abouei Ardakan, Z. Mirzaei, A. Zeinal Hamadani, and E. A. Elsayed, “Reliability optimization by considering time-dependent reliability for components,” Quality and Reliability Engineering International, vol. 33, no. 8, pp. 1641–1654, 2017.

[7] E. López, “Estudio de la fiabilidad de sistemas con reparaciones pospuestas,” Ph.D. dissertation, Universidad de Extremadura, 2004.

[8] A. Csenki, “Joint availability of systems modelled by finite semi-markov processes,” Appl. Stochastic Models & Dam Analysis, vol. 10, pp. 279–293, 1994.

[9] A. Csenki, “Mission availability for repairable semi-markov systems: analytical results and computational implementation,” Statistics, vol. 26, pp. 75–87, 1995.

[10] A. Csenki, “Transient analysis of interval availability for repairable systems modelled by finite semi-markov processes,” IMA J. Math. Appl. in Business and Industry, vol. 6, pp. 267–281, 1995.

[11] L. Donatiello and B. R. Lyer, “Closed-form solution for system availability distribution,” IEEE Trans. Reliab, vol. 36, pp. 45–47, 1987.

[12] G. Rubino and B. Sericola, “Interval availability analysis using operational periods,” Performance Evaluation, vol. 14, pp. 257–272, 1992.

[13] S. Alaswad and Y. Xiang, “A review on condition-based maintenance optimization models for stochastically deteriorating system,” Reliability Engineering & System Safety, vol. 157, pp. 54–63, 2017.

[14] V. Arunachalam, A. Calvache, and A. Tansu, “Some useful approximations for the availability function,” International Journal of Reliability, Quality and Safety Engineering, vol. 22, no. 2, p. 1550008 (15 pages), 2015.

[15] L. Bednara, “Methods for approximating the availability functions,” Master’s
thesis, Delft University of Technologyy, Netherlands, 2008.

[16] A. Calvache, “Aproximaciones de las funciones de renovación y de disponibilidad, con aplicaciones en el área administrativa,” in XXIV Simposio Internacional de Estadística., 2014.

[17] A. Calvache, “The transient and asymptotic moments for the random mission time of a system,” Ciencia en Desarrollo, vol. 7, no. 2, pp. 109–124, 2016.

[18] L. Cui, J. Chen, and B. Wu, “New interval availability indexes for markov repairable systems,” Reliability Engineering & System Safety, vol. 168, Mar. 2017.

[19] B. Sericola, “Interval-availability distribution of 2-state systems with exponential failures and phase-type repairs,” IEEE Transactions on Reliability, vol. 43, no. 2, pp. 335–343, 1994.

[20] L. Hu, D. Yue, and D. Zhao, “Availability equivalence analysis of a repairable series-parallel system,” Mathematical Problems in Engineering, vol. 2012, p. 15, 2012.

[21] A. Csenki, “A new approach to the cumulative operational time for semimarkov models of repairable systems,” Reliability Engineering and System Safety, vol. 54, pp. 11–21, 1996.

[22] M. A. El-Damcese, A. N. Salem, and N. Temraz, “Semi-markov model of a series-parallel system subject to preventive maintenance,” Journal of Statistics Applications & Probability, vol. 3, pp. 307–318, 2013.

[23] L. R. Figueredo, “Planteamiento y solución de un sistema de ecuaciones integrales que modelan la disponibilidad de un sistema reparable.” Master’s thesis, Universidad de EAFIT, 2016.

[24] T. Boehme, W. Preuss, and V. Wall, “On a simple numerical method for computing stieltjes integrals in reliability theory,” Probability in the Engineering and Informational Sciences, vol. 5, no. 01, pp. 113–128, 1991.