Design of a Low Cost Control System for an Astronomical Observatory

Main Article Content

Pablo Cuartas Restrepo
Natalia Gaviria-Gómez
Julian Galvez-Serna


Electrical design, system architecture, system and network configuration, control system design, MEADE-LX850


This work shows the engineering process carried out for the design of a low cost control system for an astronomical observatory. The work describes the implementation to adapt the equipment of the observatory to a Master Control System (MCS) and be able to use it remotely. The instruments and software required for the integration of the equipment as part of a robotic observatory are also described. 


Download data is not yet available.
Abstract 48 | PDF Downloads 60


[1] K. G. Strassmeier, L. J. Boyd, D. H. Epand, and T. Granzer, “Wolfgang-amadeus: The university of vienna twin automatic photoelectric telescope,” Astronomical Society of the Pacific, vol. 109, pp. 697–706, Jun 1997.

[2] A. J. Castro-Tirado, “Robotic autonomous observatories: a historical perspective,” Advances in Astronomy, vol. 2010, 2010.

[3] A. Pickles, A. Hjelstrom, T. Boroson, B. Burleson, P. Conway, J. De Vera, M. Elphick, B. Haworth, W. Rosing, E. Saunders et al., “Lcogt network observatory operations,” in Observatory Operations: Strategies, Processes, and Systems V, vol. 9149. International Society for Optics and Photonics, 2014, p. 914912.

[4] J. N. González-Pérez, A. Hempelmann, M. Mittag, and H.-J. Hagen, “Controlling the hamburg robotic telescope: a description of the software,” in Advanced Software and Control for Astronomy II, vol. 7019. International Society for Optics and Photonics, 2008, p. 70192V.

[5] G. Bakos, Z. Csubry, K. Penev, D. Bayliss, A. Jordán, C. Afonso, J. D. Hartman, T. Henning, G. Kovács, R. W. Noyes et al., “Hatsouth: a global network of fully automated identical wide-field telescopes,” Publications of the Astronomical Society of the Pacific, vol. 125, no. 924, p. 154, 2013.

[6] E. L. Gomez and M. T. Fitzgerald, “Robotic telescopes in education,” Astronomical Review, vol. 13, no. 1, pp. 28–68, 2017.

[7] H. Muriel, “Astronomy in argentina,” People and Strategies in Astronomy, vol. 2, pp. 73–98, 2013.

[8] S. Villanueva Jr, B. S. Gaudi, R. W. Pogge, J. D. Eastman, K. G. Stassun, M. Trueblood, and P. Trueblood, “The dedicated monitor of exotransits and transients (demonext): System overview and year one results from a low-cost robotic telescope for follow-up of exoplanetary transits and transients,” arXiv preprint arXiv:1709.05353, 2017.

[9] G. W. Henry and J. A. Eaton, Eds., Robotic telescopes : current capabilities, present developments, and future prospects for automated astronomy : proceedings of a symposium held as part of the 106th annual meeting of the Astronomical Society of the Pacific, Flagstaff, Arizona, 28-30 June 1994, ser. Astronomical Society of the Pacific Conference Series, vol. 79, 1995.

[10] F. K. Chun, R. D. Tippets, D. M. Strong, D. J. Della-Rose, D. E. Polsgrove, K. C. Gresham, J. A. Reid, C. P. Christy, M. Korbitz, J. Gray et al., “A new global array of optical telescopes: The falcon telescope network,” Publications of the Astronomical Society of the Pacific, vol. 130, no. 991, p. 095003, 2018.

[11] J. Schmitt, K.-P. Schröder, G. Rauw, A. Hempelmann, M. Mittag, J. González-Pérez, S. Czesla, U. Wolter, D. Jack, P. Eenens et al., “Tigre: A new robotic spectroscopy telescope at guanajuato, mexico,” Astronomische Nachrichten, vol. 335, no. 8, pp. 787–796, 2014.

[12] A. B. Smith, “The development and implementation of a remote robotic telescope system at appalachian state university’s dark sky observatory: A thesis,” Ph.D. dissertation, Appalachian State University, 2009.

[13] J. Pepper, R. W. Pogge, D. L. DePoy, J. L. Marshall, K. Z. Stanek, A. M. Stutz, S. Poindexter, R. Siverd, T. P. O’Brien, M. Trueblood, and P. Trueblood, “The kilodegree extremely little telescope (kelt): A small robotic telescope for large-area synoptic surveys,” Publications of the Astronomical Society of the Pacific, vol. 119, no. 858, p. 923, 2007.

[14] M. Lehner, C.-Y. Wen, J.-H. Wang, S. Marshall, M. Schwamb, Z.-W. Zhang, F. Bianco, J. Giammarco, R. Porrata, C. Alcock et al., “The taiwanese-american occultation survey: the multi-telescope robotic observatory,” Publications of
the Astronomical Society of the Pacific, vol. 121, no. 876, p. 138, 2009.

[15] M. Kosiarek, “First autonomous telescope at wallace observatory: impact and preliminary results,” Ph.D. dissertation, Massachusetts Institute of Technology, 2015.

[16] J. Gálvez Serna, “Diseño de un sistema de control para un observatorio astronómico robótico autónomo básico,” Tesis de Maestría, 2018. 112, 117

[17] W. Gawronski, “Control and pointing challenges of antennas and (radio) telescopes (i),” in PROCEEDINGS OF THE AMERICAN CONTROL CONFERENCE, vol. 6, 2005, p. 3758.

[18] C. J. Mottram, I. A. Steele, and L. Morales, “Design of low cost and reliable instrumentation for robotic telescopes,” in Ground-based Instrumentation for Astronomy, vol. 5492. International Society for Optics and Photonics, 2004, pp. 677–689.

[19] ASCOM, “ASCOM - Standards for Astronomy,” 2014.

[20] E. Downey, “Indi: Instrument-neutral distributed interface,” 2007.

[21] C. Pennypacker, M. Boer, R. Denny, F. Hessman, J. Aymon, N. Duric, S. Gordon, D. Barnaby, G. Spear, and V. Hoette, “Rtml–a standard for use of remote telescopes-enabling ubiquitous use of remote telescopes,” Astronomy & Astrophysics, vol. 395, no. 2, pp. 727–731, 2002.

[22] A. Klotz, “Protocols for robotic telescope networks,” Advances in Astronomy, vol. 2010, 2010.

[23] K. A. Hallberg, “Reducción de datos astronómicos basada en procesamiento de imágenes para la robotización de telescopios,” Ph.D. dissertation, UNIVERSIDAD DE BUENOS AIRES, 2013.

[24] R. M. Genet, D. S. Hayes, D. Epand, L. Boyd, and D. Keller, “Robotic observatories. a handbook of remote-access personal-computer astronomy.” Robotic observatories. A handbook of remote-access personal-computer astronomy., by Genet, RM; Hayes, DS; Epand, DH; Boyd, LJ; Keller, DF. AutoScope Corp., Mesa, AZ (USA), 1989, 14-292 p. 1989.

[25] P. Barbosa and J. Gregorio, Elementos de astronomía de posición, universidad ed. Bogotá: Universidad Nacional de Colombia, 2009.

[26] L. Hardy, T. Butterley, V. Dhillon, S. Littlefair, and R. Wilson, “pt5m–a 0.5 m robotic telescope on la palma,” Monthly Notices of the Royal Astronomical Society, vol. 454, no. 4, pp. 4316–4325, 2015.

[27] S. B. Cenko, D. B. Fox, D.-S. Moon, F. A. Harrison, S. Kulkarni, J. R. Henning, C. D. Guzman, M. Bonati, R. M. Smith, R. P. Thicksten et al., “The automated palomar 60 inch telescope,” Publications of the Astronomical Society of the Pacific,
vol. 118, no. 848, p. 1396, 2006.

[28] J. Colomé, I. Ribas, X. Francisco, K. Casteels, D. Fernández, J. Isern, X. Palau, and J. Torra, “The oadm robotic observatory,” Advances in Astronomy, vol. 2010, 2010.

[29] A. Yanes-Díaz, S. Rueda-Teruel, J. Antón, F. Rueda-Teruel, M. Moles, A. Cenarro, A. Marín-Franch, A. Ederoclite, N. Gruel, J. Varela et al., “Goals and strategies in the global control design of the oaj robotic observatory,” in Observatory Operations: Strategies, Processes, and Systems IV, vol. 8448. International Society for Optics and Photonics, 2012, p. 84481B.

[30] M. Im, C. Choi, and K. Kim, “Lee sang gak telescope (lsgt): a remotely operated robotic telescope for education and research at seoul national university,” arXiv preprint arXiv:1510.03161, 2015.

[31] W. Vestrand, J. Theiler, and P. Wozniak, “Unsolved problems in observational astronomy. ii. focus on rapid response – mining the sky with “thinking” telescopes,” Astronomische Nachrichten: Astronomical Notes, vol. 325, no. 6-8, pp. 477–482, 2004.

[32] N. Blagorodnova, J. D. Neill, R. Walters, S. R. Kulkarni, C. Fremling, S. Ben-Ami, R. G. Dekany, J. R. Fucik, N. Konidaris, R. Nash et al., “The sed machine: a robotic spectrograph for fast transient classification,” Publications of the Astronomical Society of the Pacific, vol. 130, no. 985, p. 035003, 2018.

[33] J. Ebr, T. Bulik, L. Font, M. Gaug, P. Janecek, J. Jurysek, D. Mandat, S. Stefanik, L. Valore, and G. Vasileiadis, “Atmospheric calibration of the cherenkov telescope array,” arXiv preprint arXiv:1709.04273, 2017.

[34] M. Solar, P. Michelon, J. Avarias, and M. Garces, “A scheduling model for astronomy,” Astronomy and Computing, vol. 15, pp. 90–104, 2016.

[35] Q. Liu, P. Wei, Z.-H. Shang, B. Ma, and Y. Hu, “Research on scheduling of robotic transient survey for antarctic survey telescopes (ast3),” Research in Astronomy and Astrophysics, vol. 18, no. 1, p. 005, 2018.\T1\textendash4527/18/1/5

[36] A. R. Chishti, S. Bukhari, H. S. Khaliq, M. H. Khan, and S. Z. H. Bukhari, “Radio telescope antenna azimuth position control system design and analysis in matlab/simulink using pid&lqr controller,” The Islamia University of Bahawalpur, Pakistan, 2014.

[37] Y. Tsapras, R. Street, K. Horne, C. Snodgrass, M. Dominik, A. Allan, I. Steele, D. Bramich, E. Saunders, N. Rattenbury et al., “Robonet-ii: Follow-up observations of microlensing events with a robotic network of telescopes,” Astronomische Nachrichten: Astronomical Notes, vol. 330, no. 1, pp. 4–11, 2009.

[38] A. B. Smith, D. B. Caton, and R. L. Hawkins, “Implementation and operation of a robotic telescope on skynet,” Publications of the Astronomical Society of the Pacific, vol. 128, no. 963, p. 055002, 2016.

[39] A. Castro-Tirado, F. S. Moreno, C. P. del Pulgar, D. Azócar, G. Beskin, J. Cabello, R. Cedazo, L. Cuesta, R. Cunniffe, E. González et al., “The global robotic telescopes intelligent array for e-science (gloria),” Revista Mexicana de Astronomía
y Astrofísica, vol. 45, pp. 104–109, 2014.