Thermal Conductivity Measurement of Insulating Materials under non-Stationary Heat Flow

Main Article Content

C M Daza-Mafioli
E E Coral-Escobar
J Plaza-Castillo


Thermal conductivity, heat flow, thermal insulator, uncertainty, energy consumption, building construction


A device to measure thermal conductivity in thermal insulating solid materials commonly used in buildings was developed following a one-dimensional model of heat flow through a plate of the material to be evaluated. The temperature gradient between the plate faces was measured as a function of time by means of a set of type T thermocouples. A circuit with commercial microcontrollers was designed to control the instrument’s mechanisms, the acquisition and the treatment of data. In preliminary tests with some materials, thermal conductivity values similar to those reported in the literature were obtained by using a linear adjustment with R values between 0.90 and 0.98. This device turns out to be a good instrument for measuring thermal conductivity because it has several advantages, such as: easy implementation, sample size, measurement method; compared to those using traditional methods.


Download data is not yet available.
Abstract 427 | PDF (Español) Downloads 546


[1] L. Aditya, T. Mahlia, B. Rismanchi, H. Ng, M. Hasan, H. Metselaar, O. Muraza, and H. Aditiya, “A review on insulation materials for energy conservation in buildings,” Renewable and Sustainable Energy Reviews, vol. 73, pp. 1352 – 1365, 2017. [Online]. Available:

[2] H. F. Meiners, W. Eppenstein, and K. H. Moore, Experimentos de física. Limusa, 1980.

[3] I. Morales and E. Carrillo, Diseño y Construcción de un Conductímetro con Control Basado en Tecnología PIC Para la Medición de Conductividad Térmica en Materiales Sólidos. Universidad del Atlántico, 2005.

[4] E. Coral, I. Morales, E. Carrillo, and J. Plaza, “Diseño del sistema de medición de conductividad térmica de materiales para construcción,” Revista colombiana de física, vol. 38, no. 3, 2006. [Online]. Available:

[5] W. P. Adamczyk, S. Pawlak, and Z. Ostrowski, “Determination of thermal conductivity of cfrp composite materials using unconventional laser flash technique,” Measurement, vol. 124, pp. 147 – 155, 2018. [Online]. Available:

[6] R. Ricciu, L. A. Besalduch, A. Galatioto, and G. Ciulla, “Thermal characterization of insulating materials,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 1765 – 1773, 2018. [Online]. Available:

[7] C. Buratti, E. Belloni, L. Lunghi, A. Borri, G. Castori, and M. Corradi, “Mechanical characterization and thermal conductivity measurements using of a new ’small hot-box’ apparatus: innovative insulating reinforced coatings
analysis,” Journal of Building Engineering, vol. 7, pp. 63 – 70, 2016. [Online]. Available:

[8] X. M. Arce, F. E. Navarrete, and E. I. M. Haro, “Diseño de una caja caliente bajo la norma astm c 1363,” Revista Ciencia UNEMI, vol. 9, no. 21, pp. 83–96, 2016.

[9] A. Hadded, S. Benltoufa, F. Fayala, and A. Jemni, “Thermo physical characterisation of recycled textile materials used for building insulating,” Journal of Building Engineering, vol. 5, pp. 34 – 40, 2016. [Online].

[10] G. D. Santa, F. Peron, A. Galgaro, M. Cultrera, D. Bertermann, J. Mueller, and A. Bernardi, “Laboratory measurements of gravel thermal conductivity: An update methodological approach,” Energy Procedia, vol. 125, pp. 671 –677, 2017. [Online]. Available:

[11] M. G. Gomes, I. Flores-Colen, F. da Silva, and M. Pedroso, “Thermal conductivity measurement of thermal insulating mortars with eps and silica aerogel by steady-state and transient methods,” Construction and Building Materials, vol. 172, pp. 696 – 705, 2018. [Online]. Available:

[12] Y. Jannot, A. Degiovanni, and G. Payet, “Thermal conductivity measurement of insulating materials with a three layers device,” International Journal of Heat and Mass Transfer, vol. 52, no. 5, pp. 1105 – 1111, 2009. [Online]. Available:

[13] S. Schiavoni, F. D’Alessandro, F. Bianchi, and F. Asdrubali, “Insulation materials for the building sector: A review and comparative analysis,” Renewable and Sustainable Energy Reviews, vol. 62, pp. 988 – 1011, 2016.
[Online]. Available:

[14] E. Yamasue, M. Susa, H. Fukuyama, and K. Nagata, “Thermal conductivities of silicon and germanium in solid and liquid states measured by nonstationary hot wire method with silica coated probe,” Journal of Crystal
Growth, vol. 234, no. 1, pp. 121 – 131, 2002. [Online]. Available:

[15] Y. A. Çengel and A. J. Ghajar, Transferencia de calor y masa. Fundamentos y aplicaciones, 4th ed. McGraw Hill, 2011.

[16] F. W. Sears and Zemansky, Física general, versión española de Albino Yusta Almarza. Aguilar, 1975.

[17] D. C. Baird, Experimentación: una introducción a la teoría de mediciones y al diseño de experimentos. Prentice-Hall Hispanoamericana Mexico. DF, 1991, no. QC39 B3418 1991.

[18] W. A. Schmid, R. Lazos et al., “Guía para estimar la incertidumbre de la medición,” Centro nacional de Metrología (Abril 2004), 2000.

[19] M. M. P. Hernández, “Estimación de incertidumbres. guía gum,” Revista Española de Metrología, vol. 1, no. 3, pp. 113–130, 2012. [Online]. Available:

[20] T. G. Ríos Soto, “Concepción y construcción de un dispositivo para medir la conductividad térmica de materiales para edificaciones,” Master’s thesis, Universidad de Sonora .División de ingeniería, 1996. [Online]. Available:

[21] L.M.VélezMoreno,Materiales industriales: teoría y aplicaciones. Medellín: Instituto Tecnológico Metropolitano, 2008.