Air Quality in Aburrá Valley: What Can We Expect from the Smart City

Main Article Content

Nora Cadavid-Giraldo
Ana Zuelima Orrego Guarín
Humberto Barrera Jiménez


Urban air quality, smart city, fourth industrial revolution


The global phenomenon of urban growth, together with the rapid penetration of mobile telephony, internet of things, sensors, automation, real-time data exchange, etc., converge on a topic that generates great expectations: the smart city. Among its multiple implications, this text highlights relevant facts for air quality management in the Aburrá Valley. The starting point is the Air Quality Management Plan for the Aburrá Valley, valid for 2017-2030. A correlation between the management opportunities that the smart city offers to air quality, and the strategic lines of the plan is presented. Important solutions are identified from the bottom-up approach, focused on the massive use of information and the appropriation of digital tools to promote self-management of emissions in all areas - fixed and mobile, public and private sources. 


Download data is not yet available.
Abstract 733 | PDF (Español) Downloads 2101


[1] F. Cugurullo, The origin of the smart city imaginary. Routledge, 2018.

[2] M. Vallianatos, “Uncovering the early history of ‘big data’and ‘smart city’in los angeles,” Boom California, pp. 18–39, 2015.

[3] S. Yazawa, “The technopolis program in japan,” Hitotsubashi journal of social studies, vol. 22, no. 1, pp. 7–18, 1990.

[4] A. Tokmakoff and J. Billington, “Consumer services in smart city adelaide,” in Paper published at HOIT 94. Proceedings of an International Crossdisciplinary Conference on Home-Oriented Informatics, Telematics & Automation, University of Copenhagen, 1994.

[5] S. Hamnett, “The multi-function polis 1987–1997,” Australian Planner, vol. 34, no. 4, pp. 227–232, 1997.

[6] P. Parker et al., “The multi-function polis 1987-97: an international failure or innovative local project?” 1998.

[7] T. M. Heng and L. Low, “The intelligent city: Singapore achieving the next lap: Practitoners forum,” Technology Analysis & Strategic Management, vol. 5, no. 2, pp. 187–202, 1993.

[8] G. Alberts, M. Went, and R. Jansma, “Archaeology of the amsterdam digital city; why digital data are dynamic and should be treated accordingly,” Internet Histories, vol. 1, no. 1-2, pp. 146–159, 2017.

[9] J. Woetzel, J. Remes, B. Boland, K. Lv, S. Sinha, G. Strube, J. Means, J. Law, A. Cadena, and V. Von der Tann, “Smart cities: Digital solutions for a more livable future,” McKinsey Global Institute: New York, NY, USA, pp. 1–152, 2018.

[10] S. T. Shwayri, “A model korean ubiquitous eco-city? the politics of making songdo,” Journal of Urban Technology, vol. 20, no. 1, pp. 39–55, 2013.

[11] J. Lyons, “Intel smart city tech furthers city’s green goals,” 2014.

[12] C. Carr and M. Hesse, “When alphabet inc. plans toronto’s waterfront: New post-political modes of urban governance,” Urban Planning, vol. 5, no. 1, pp. 69–83, 2020.

[13] C. R. n Fundación ECSIM, “AnÁlisis de prefactibilidad internet banda ancha para acceso de hogares y empresas en medellin y su area metropÓlitana,” in Proyecto: INFRAESTRUCTURA TIC PARA LA EQUIDAD, 2018.

[14] U. d. A. Área Metropolitana del Valle de Aburrá, “Contaminación atmosférica y sus efectos sobre la salud de los habitantes del valle de aburrÁ; 2008-2017. análisis de la exposición de corto y largo plazo,” 2019.

[15] D. N. de Planeación, “Documento conpes 3943, política para el mejoramiento de la calidad del aire,” 2019.

[16] G. R. Hugo de Jesús, N. L. Emmanuel Salvador, M. H. Nora Adriana, V. G. Fernán Alonso, A. C. Ruth Marina, and C. L. Heisling Alexander, “Contaminación atmosférica y efectos sobre la salud de la población de medellín y su área metropolitana, 2008-2015,” Facultad de Salud Pública, Universidad de Antioquia - Área Metropolitana del Valle de Aburrá, 2019.

[17] E. Martínez, C. Quiroz, F. Daniels, and A. Montoya, “Contaminación atmosférica y efectos sobre la salud de la población de medellín y su área metropolitana,” Facultad de Salud Pública, Universidad de Antioquia, 2007.

[18] Área Metropolitana del Valle de Aburrá, “Plan integral de gestión de la calidad del aire del valle de aburrá,” 2017.

[19] Y. Zheng, F. Liu, and H.-P. Hsieh, “U-air: When urban air quality inference meets big data,” in Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, 2013, pp. 1436–1444.

[20] I. Kök, M. U. Simsek, and S. Özdemir, “A deep learning model for air quality prediction in smart cities,” in 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017, pp. 1983–1990.

[21] Y. Wen, S. Zhang, J. Zhang, S. Bao, X. Wu, D. Yang, and Y. Wu, “Mapping dynamic road emissions for a megacity by using open-access traffic congestion index data,” Applied Energy, vol. 260, p. 114357, 2020.

[22] J. Zawieska and J. Pieriegud, “Smart city as a tool for sustainable mobility and transport decarbonisation,” Transport Policy, vol. 63, pp. 39–50, 2018.

[23] A. M. Roldán, “Siata, referente en gestión de riesgo de desastres,” Revista Universidad EAFIT, vol. 50, no. 166, p. 83, 2015.

[24] C. Benevolo, R. P. Dameri, and B. D’auria, “Smart mobility in smart city,” in Empowering Organizations. Springer, 2016, pp. 13–28.

[25] G. Bel and J. Rosell, “Effects of the 80km/h and variable speed limits on air pollution in the metropolitan area of barcelona,” Transportation Research Part D: Transport and Environment, vol. 23, pp. 90–97, 2013.

[26] I. K. Folgerø, T. Harding, and B. S. Westby, “Going fast or going green? evidence from environmental speed limits in norway,” Transportation Research Part D: Transport and Environment, vol. 82, p. 102261, 2020.

[27] M. Makridis, G. Fontaras, B. Ciuffo, and K. Mattas, “Mfc free-flow model: Introducing vehicle dynamics in microsimulation,” Transportation Research Record, vol. 2673, no. 4, pp. 762–777, 2019.

[28] H. S. Chong, S. Kwon, Y. Lim, and J. Lee, “Real-world fuel consumption, gaseous pollutants, and co2 emission of light-duty diesel vehicles,” Sustainable Cities and Society, vol. 53, p. 101925, 2020.

[29] C. K. Gately, L. R. Hutyra, S. Peterson, and I. S. Wing, “Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone gps data,” Environmental pollution, vol. 229, pp. 496–504, 2017.

[30] A. S. John Ramiro, A. S. Andrés Felipe, M. S. Ricardo, C. L. Fernando, L. G. Andrés Felipe, and H. G. Óscar David, “Factores de emisión reales de fuentes móviles en el valle de aburrá.” Universidad de Antioquia - Área Metropolitana del Valle de Aburrá, 2019, p. 78.

[31] W.-H. Lee and C.-Y. Chiu, “Design and implementation of a smart traffic signal control system for smart city applications,” Sensors, vol. 20, no. 2, p. 508, 2020.

[32] M. S. Al-Ani and K. Alheeti, “Intelligent traffic light control system based image intensity measurment,” Al-Anbar University-College Of Computer Science-Iraq, 2010.

[33] S. Soomro, M. H. Miraz, A. Prasanth, and M. Abdullah, “Artificial intelligence enabled iot: traffic congestion reduction in smart cities,” 2018

[34] C. Aoun, “The smart city cornerstone: Urban efficiency,” Published by Schneider electric, 2013. 200

[35] M. R. Jabbarpour, A. Nabaei, and H. Zarrabi, “Intelligent guardrails: an iot application for vehicle traffic congestion reduction in smart city,” in 2016 ieee international conference on internet of things (ithings) and ieee green computing and communications (greencom) and ieee cyber, physical and social computing (cpscom) and ieee smart data (smartdata). IEEE, 2016, pp. 7–13.

[36] P. Carvalho, “Pricing out congestion, experiences from abroad,” Research note, The New Zeland Initative, vol. 150, pp. 603–625, 2020.

[37] G. R. Timilsina and H. B. Dulal, Fiscal policy instruments for reducing congestion and atmospheric emissions in the transport sector: A review. The World Bank, 2008.

[38] C. P. Green, J. S. Heywood, and M. Navarro Paniagua, “Did the london congestion charge reduce pollution?” Regional Science and Urban Economics, vol. 84, p. 103573, 2020.

[39] S. Saharan, S. Bawa, and N. Kumar, “Dynamic pricing techniques for intelligent transportation system in smart cities: A systematic review,” Computer Communications, vol. 150.

[40] R. de Souza, M. Goh, H.-C. Lau, W.-S. Ng, and P.-S. Tan, “Collaborative urban logistics – synchronizing the last mile a singapore research perspective,” Procedia - Social and Behavioral Sciences, vol. 125, pp. 422–431, 2014, eighth International Conference on City Logistics 17-19 June 2013, Bali, Indonesia.

[41] N. Malhene, A. Trentini, G. Marques, and P. Burlat, “Freight consolidation centers for urban logistics solutions: The key role of interoperability,” in 2012 6th IEEE International Conference on Digital Ecosystems and Technologies (DEST). IEEE, 2012, pp. 1–6.

[42] D. Boudoin, C. Morel, and M. Gardat, “Supply chains and urban logistics platforms,” in Sustainable urban logistics: Concepts, methods and information systems. Springer, 2014, pp. 1–20.

[43] Y. LI and Q. ZHANG, “Evaluation methods of logistics center location planning schemes,” Journal of Highway and Transportation Research and Development, vol. 27, no. 2, pp. 143–146, 2010.

[44] T.-Y. Liao, “On-line vehicle routing problems for carbon emissions reduction,” Computer-Aided Civil and Infrastructure Engineering, vol. 32, no. 12, pp. 1047–1063, 2017.

[45] E. Jabir, V. V. Panicker, and R. Sridharan, “Multi-objective optimization model for a green vehicle routing problem,” Procedia - Social and Behavioral Sciences, vol. 189, pp. 33–39, 2015, operations Management in Digital Economy.

[46] D. Cattaruzza, N. Absi, D. Feillet, and J. González-Feliu, “Vehicle routing problems for city logistics,” EURO Journal on Transportation and Logistics, vol. 6, no. 1, pp. 51–79, 2017.

[47] Área Metropolitana del Valle de Aburrá, “Plan operacional para enfrentar episodios de contaminación atmosférica en el Área metropolitana del vallé de aburrá,” 2018.

[48] D. Shin, C. G. Woo, K.-J. Hong, H.-J. Kim, Y.-J. Kim, B. Han, J. Hwang, G.-Y. Lee, and S.-N. Chun, “Continuous measurement of pm10 and pm2.5 concentration in coal-fired power plant stacks using a newly developed diluter and optical particle counter,” Fuel, vol. 269, p. 117445, 2020.

[49] Servotech, “Data-logger for vehicle data acquisition,” 2014.

[50] R. Massoud, F. Bellotti, R. Berta, A. De Gloria, and S. Poslad, “Eco-driving profiling and behavioral shifts using iot vehicular sensors combined with serious games,” in 2019 IEEE Conference on Games (CoG). IEEE, 2019, pp. 1–8.

[51] H. Rakha and R. K. Kamalanathsharma, “Eco-driving at signalized intersections using v2i communication,” in 2011 14th international IEEE conference on intelligent transportation systems (ITSC). IEEE, 2011, pp. 341–346.

[52] H.-H. Song and J.-k. Choi, “Implementation of eco driving assistance system based on iot,” The Journal of The Institute of Internet, Broadcasting and Communication, vol. 20, no. 2, pp. 157–163, 2020.

[53] I. T. Union, “Digital identity road map guide,” in Creative Commons Attribution 3.0 IGO, 2020.

[54] A. Stevenson, “New mobility and digital identity: The vehicle for success,” in IoT Agenda, 2020, pp.–Agenda/New–mobility–and–digital–identity–The–vehicle–for–success.

[55] V. Matasov, L. Belelli Marchesini, A. Yaroslavtsev, G. Sala, O. Fareeva, I. Seregin, S. Castaldi, V. Vasenev, and R. Valentini, “Iot monitoring of urban tree ecosystem services: Possibilities and challenges,” Forests, vol. 11, no. 7, p. 775, 2020.

[56] D. J. Nowak and E. J. Greenfield, “The increase of impervious cover and decrease of tree cover within urban areas globally (2012–2017),” Urban Forestry & Urban Greening, vol. 49, p. 126638, 2020.

[57] E. Banzhaf and H. Kollai, “Monitoring the urban tree cover for urban ecosystem services–the case of leipzig, germany.” International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2015.

[58] U. N. d. C. Área Metropolitana del Valle de Aburrá, “Caracterización periódica de los combustibles usados en el Área Metropolitana del Valle de Aburrá y analizar su calidad en plantas mayoristas y sitios de distribución,” 2017.

[59] W. Riggs, “Telework and sustainable travel during the covid-19 era,” Available at SSRN 3638885, 2020.

[60] A. Hook, B. Sovacool, S. Sorrell et al., “A systematic review of the energy and climate impacts of teleworking,” Environmental Research Letters, 2020.

[61] L. Pelonero, A. Fornaia, and E. Tramontana, “From smart city to smart citizen: rewarding waste recycle by designing a data-centric iot based garbage collection service,” in 2020 IEEE International Conference on Smart Computing (SMARTCOMP). IEEE, 2020, pp. 380–385.