Inverse-FEM Characterization of a Brain Tissue Phantom to Simulate Compression and Indentation

Main Article Content

Elizabeth Mesa-Múnera
Juan F Ramírez–Salazar
Pierre Boulanger
John W Branch https://orcid.org/0000-0002-0378-028X

Keywords

Inverse FEM, Compression Test, Indentation, Tissue Calibration, Surgical Simulators.

Abstract

The realistic simulation of tool-tissue interactions is necessary for the development of surgical simulators and one of the key element for it realism is accurate bio-mechanical tissue models. In this paper, we determined the mechanical properties of soft tissue by minimizing the difference between experimental measurements and the analytical or simulated solution of the deformation. Then, we selected the best model parameters that fit the experimental data to simulate a bonded compression and a needle indentation with a flat-tip. We show that the inverse FEM allows accurate material property estimation. We also validated our results using multiple tool-tissue interactions over the same specimen.


MSC: 74S05

Downloads

Download data is not yet available.
Abstract 559 | PDF Downloads 204 HTML Downloads 1626

References

[1] A. Maciel, T. Halic, Z. Lu, L. P. Nedel, y S. De, “Using the PhysX engine for physics-based virtual surgery with force feedback”, The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 5, n.o 3, pp. 341-353, 2009. Referenced in 11

[2] S. Misra, K. J. Macura, K. T. Ramesh, A. M. Okamura, “The Importance of Organ Geometry and Boundary Constraints for Planning of Medical Interventions”, Med Eng Phys, vol. 31, n.o 2, pp. 195-206, mar. 2009. Referenced in 11

[3] N. Abolhassani, R. Patel, M. Moallem, “Needle insertion into soft tissue: A survey”, Medical Engineering & Physics, vol. 29, n.o 4, pp. 413-431, may 2007. Referenced in 11, 26

[4] I. Brouwer, J. Ustin, L. Bentley, A. Sherman, N. Dhruv, F. Tendick, “Measuring In Vivo Animal Soft Tissue Properties for Haptic Modeling in Surgical Simulation”, in Stud Health Technol Inform, 2001, pp. 69-74. Referenced in 11, 12

[5] M. Kauer, V. Vuskovic, J. Dual, G. Szekely, y M. Bajka, “Inverse finite element characterization of soft tissues”, Medical Image Analysis, vol. 6, n.o 3, pp. 275-287, sep. 2002. Referenced in 11, 12

[6] S. P. DiMaio y S. E. Salcudean, “Needle insertion modelling and simulation”, in Robotics and Automation, 2002. Proceedings. ICRA ’02. IEEE International Conference on, 2002, vol. 2, pp. 2098 - 2105 vol.2. Referenced in 11, 12

[7] J. Kim y M. Srinivasan, “Characterization of Viscoelastic Soft Tissue Properties from In Vivo Animal Experiments and Inverse FE Parameter Estimation”, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005, vol. 3750, J. Duncan y G. Gerig, Eds. Springer Berlin / Heidelberg, 2005, pp.599-606. Referenced in 11, 12

[8] C. Dechwayukul y W. Thongruang, “Compressive modulus of adhesive bonded rubber block”, Songklanakarin Journal of Science and Technology, vol. 30, n.o 2, pp. 221-225, 2008. Referenced in 12, 21

[9] M. Kaneko, C. Toya, y M. Okajima, “Active Strobe Imager for Visualizing Dynamic Behavior of Tumors”, in Robotics and Automation, 2007 IEEE International Conference on, 2007, pp. 3009 -3014. Referenced in 12

[10] A. M. Okamura, C. Simone, y M. D. O’Leary, “Force modeling for needle insertion into soft tissue”, Biomedical Engineering, IEEE Transactions on, vol. 51, n.o 10, pp. 1707 -1716, oct. 2004. Referenced in 12, 26

[11] K. Miller, A. Wittek, G. Joldes, A. Horton, T. Dutta-Roy, J. Berger, y L. Morriss, “Modelling brain deformations for computer-integrated neurosurgery”, International Journal for Numerical Methods in Biomedical Engineering, vol. 26, n.o 1, pp. 117-138, 2010. Referenced in 12

[12] M. Kohandel, S. Sivaloganathan, G. Tenti, y J. M. Drake, “The constitutive properties of the brain parenchyma: Part 1. Strain energy approach”, Medical Engineering & Physics, vol. 28, n.o 5, pp. 449-454, jun. 2006. Referenced in 12, 16

[13] K. Sangpradit, H. Liu, L. D. Seneviratne, y K. Althoefer, “Tissue identification using inverse Finite Element analysis of rolling indentation”, in Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on, 2009, pp. 1250-1255. Referenced in 12

[14] Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, Second Edition, 2nd ed. Springer, 1993. Referenced in 12

[15] Y. C. Fung, Foundations of Solid Mechanics, 2nd Printing. Prentice Hall, 1965. Referenced in 12

[16] A. F. Bower, Applied Mechanics of Solids, 1.a ed. CRC Press, 2009. Referenced in 12, 14, 17

[17] N. Famaey y J. V. Sloten, “Soft tissue modelling for applications in virtual surgery and surgical robotics”, Computer Methods in Biomechanics and Biomedical Engineering, vol. 11, n.o 4, pp. 351-366, 2008. Referenced in 13

[18] G. Franceschini, D. Bigoni, P. Regitnig, y G. A. Holzapfel, “Brain tissue deforms similarly to filled elastomers and follows consolidation theory”, Journal of the Mechanics and Physics of Solids, vol. 54, n.o 12, pp. 2592-2620, dic. 2006. Referenced in 15, 16

[19] H. Girnary, “BRAIN PHANTOM PROJECT”, dic. 2007. Referenced in 15

[20] H. O. Altamar, R. E. Ong, C. L. Glisson, D. P. Viprakasit, M. I. Miga, S. D. Herrell, y R. L. Galloway, “Kidney Deformation and Intraprocedural Registration: A Study of Elements of Image-Guided Kidney Surgery”, Journal of Endourology, vol. 25, n.o 3, pp. 511-517, mar. 2011. Referenced in 15

[21] A. Deram, V. Luboz, E. Promayon, y Y. Payan, “Using a 3D biomechanical model to improve a light aspiration device for in vivo soft tissue characterisation”, Computer Methods in Biomechanics and Biomedical Engineering, vol. 15, n.o sup1, pp. 41-43, 2012. Referenced in 15

[22] E. Promayon, V. Luboz, G. Chagnon, T. Alonso, D. Favier, C. Barthod, y Y. Payan, “Comparison of LASTIC (Light Aspiration device for in vivo Soft TIssue Characterization) with classic Tensile Tests.”, in Proceedings of the EU-ROMECH534 Colloquium., France, 2012, pp. 75-76. Referenced in 15

[23] D. Hendrickson y F. Bellezo, “Surgical Simulator, Simulated Organs andMethod of Making Same”, . Referenced in 15

[24] K. Miller y K. Chinzei, “Constitutive modelling of brain tissue: Experiment and theory”, Journal of Biomechanics, vol. 30, n.o 11-12, pp. 1115-1121, nov. 1997. Referenced in 16

[25] K. Miller, “Constitutive model of brain tissue suitable for finite element analysis of surgical procedures”, Journal of Biomechanics, vol. 32, n.o 5, pp. 531-537, may 1999. Referenced in 16

[26] K. Miller, K. Chinzei, G. Orssengo, y P. Bednarz, “Mechanical properties of brain tissue in-vivo: experiment and computer simulation”, Journal of Biomechanics, vol. 33, n.o 11, pp. 1369-1376, nov. 2000. Referenced in 16

[27] K. I. Romanov, “The drucker stability of a material”, Journal of Applied Mathematics and Mechanics, vol. 65, n.o 1, pp. 155-162, feb. 2001. Referenced in 17

[28] A. N. Gent y E. A. Meinecke, “Compression, bending, and shear of bonded rubber blocks”, Polymer Engineering & Science, vol. 10, n.o 1, pp. 48-53, 1970. Referenced in 21

[29] J. G. Williams y C. Gamonpilas, “Using the simple compression test to determine Young’s modulus, Poisson’s ratio and the Coulomb friction coefficient”, International Journal of Solids and Structures, vol. 45, n.o 16, pp. 4448-4459, ago. 2008. Referenced in 21

[30] “Friction - DiracDelta Science & Engineering Encyclopedia”. [Online]. Available:
www.diracdelta.co.uk/science/source/f/r/ .
Referenced in 21

[31] “Coefficients of Friction for Steel”. [Online]. Available: hypertextbook.com/facts/2005/steel.shtml [Accessed: mar-2011].
Referenced in 21

[32] “Coefficient of Friction”. [Online]. Available: http://buildingcriteria2.tpub.com/ufc 4 152 01/ufc 4 152 010141.htm [Accessed: mar-2011]. Referenced in 21