First-Principles Study of Structural and Electronic Properties of Chromium Nitride/Gallium Nitride Multilayer (CrN/GaN)

Main Article Content

Ricardo Eulises Báez Cruz
César Ortega López https://orcid.org/0000-0003-2516-1989
Miguel J. Espitia R. https://orcid.org/0000-0001-9903-4224

Keywords

1x1 CrN/GaN multilayer, DFT, structural properties, electronic properties.

Abstract

In this work we perform first-principles calculations to investigate the structural and electronic properties of the 1x1 CrN/GaN multilayer. The calculations were executed in zincblende and wurtzite phase, since they are the ground states of chromium nitride CrN and gallium nitride GaN, respectively. However, we study the stability of the multilayer in the NaCl phase, in order to predict possible phase transitions. We found that the most favorable phase for the multilayer is the hexagonal wurtzite type, with possibility of passing to the NaCl phase by applying an external pressure. Our calculations indicate that the pressure of transition is 13,5 GPa. From the density of states, we found that the multilayer present a metallic behavior produced by the hybrid orbitals d-Cr and N-p that cross level Fermi.

PACS: 71.15.Mb, 71.15.Nc, 71.20.Nr

Downloads

Download data is not yet available.
Abstract 960 | PDF (Español) Downloads 414

References

[1] A. Zaoui, S. Kacimi, B. Bouhafs, and A. Roula, “First-principles study of bonding mechanisms in the series of Ti, V, Cr, Mo, and their carbides and nitrides,” Physica B: Condensed Matter, vol. 358, no. 1–4, pp. 63–71, 2005. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0921452604012724 164

[2] Z. Dridi, B. Bouhafs, P. Ruterana, and H. Aourag, “First-principles calculations of vacancy effects on structural and electronic properties of TiCx and TiNx,” J. Phys.: Condens. Matter, no. 14, pp. 10 237–10 249, 2002. 164

[3] I. Pollini, A. Mosser, and J. C. Parlebas, “Electronic, spectroscopic and elastic properties of early transition metal compounds,” Physics Reports, vol. 355, no. 1, pp. 1–72, 2001. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0370157301000187 164

[4] C. Kral, W. Lengauer, D. Rafaja, and P. Ettmayer, “Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides,” Journal of Alloys and Compounds, vol. 265, no. 1–2, pp. 215–233, 1998. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925838897002971 164

[5] G. Casiano, W. López, and J. Rodríguez, “Estabilidad Relativa del Compuesto CrN,” Revista de la Sociedad Colombiana de Física, vol. 41, no. 3, pp. 580–583, 2009. 164

[6] O. Arbouche, B. Belgoumène, B. Soudini, and M. Driz, “First principles study of the relative stability and the electronic properties of GaN,” Computational Materials Science, vol. 47, no. 2, pp. 432–438, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0927025609003516 164

[7] J.-M. Wagner and F. Bechstedt, “Properties of strained wurtzite GaN and AlN: Ab initio studies,” Phys. Rev. B, vol. 66, no. 11, p. 115202, Sep. 2002. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.66.115202 164

[8] V. Rawat and T. Sands, “Growth of TiN/GaN metal/semiconductor multilayers by reactive pulsed laser deposition,” Journal of Applied Physics, vol. 100, no. 6, p. 64901, 2006. [Online]. Available: http://link.aip.org/link/?JAP/100/064901/1 164

[9] V. Rawat, D. N. Zakharov, E. A. Stach, and T. D. Sands, “Pseudomorphic stabilization of rocksalt GaN in TiN/GaN multilayers and superlattices,” Phys. Rev. B, vol. 80, no. 2, p. 24114, Jul. 2009. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.80.024114 165

[10] K. Schwarz, “DFT calculations of solids with LAPW and WIEN2k,” Journal of Solid State Chemistry, vol. 176, no. 2, pp. 319–328, 2003. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022459603002135 165

[11] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, Oct. 1996. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.77.3865 166

[12] R. González, W. López, and J. A. R. M., “First-principles calculations of structural properties of GaN : V,” Solid State Communications, vol. 144, no. 3–4, pp. 109–113, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0038109807006084 166

[13] L. Mancera, J. A. Rodríguez, and N. Takeuchi, “Theoretical study of the stability of wurtzite, zinc-blende, NaCl and CsCl phases in group IIIB and IIIA nitrides,” physica status solidi (b), vol. 241, no. 10, pp. 2424–2428, 2004. [Online]. Available: http://dx.doi.org/10.1002/pssb.200404910 166

[14] N. Takeuchi, “First-principles calculations of the ground-state properties and stability of ScN,” Phys. Rev. B, vol. 65, no. 4, p. 45204, 2002. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.65.045204 166

[15] S.-H. Jhi, J. Ihm, S. G. Louie, and M. L. Cohen, “Electronic mechanism of hardness enhancement in transition-metal carbonitrides,” Nature, vol. 399, no. 6732, pp. 132–134, 1999. [Online]. Available: http://dx.doi.org/10.1038/20148 171

[16] J. Rufinus, “Magnetic properties of M-doped (M=Ti, V, or Cr) GaN clusters,” Journal of Magnetism and Magnetic Materials, vol. 310, no. 2, Part 2, pp. 1666–1668, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0304885306017239 172