Estudio por primeros principios de las propiedades estructurales y electrónicas de la multicapa CrN/GaN

Main Article Content

Ricardo Eulises Báez Cruz
César Ortega López https://orcid.org/0000-0003-2516-1989
Miguel J. Espitia R. https://orcid.org/0000-0001-9903-4224

Keywords

Multicapa 1x1 CrN/GaN, DFT, propiedades estructurales, propiedades electrónicas.

Resumen

En este trabajo realizamos cálculos de primeros principios para investigar las propiedades estructurales y electrónicas de la multicapa 1x1 CrN/GaN. Los cálculos se realizan en las fases zincblenda y wurtzita, debido a que este es el estado base del nitruro de cromo CrN y el nitruro de galio GaN, respectivamente. Sin embargo, se estudia la estabilidad de la multicapa en la fase NaCl, con el fin predecir posibles transiciones de fase. Encontramos que la fase más favorable para multicapa, es la hexagonal tipo wurtzita, con posibilidad de pasar a la fase NaCl mediante la aplicación de una presión externa. Nuestros cálculos nos permiten predecir que la presión de transición es 13,5 GPa. A partir de la densidad de estados encontramos que la multicapa posee un comportamiento metálico debido a la hibridación de los orbitales Cr-d y N-p que atraviesan el nivel de Fermi.

PACS: 71.15.Mb, 71.15.Nc, 71.20.Nr

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 967 | PDF Downloads 423

Referencias

[1] A. Zaoui, S. Kacimi, B. Bouhafs, and A. Roula, “First-principles study of bonding mechanisms in the series of Ti, V, Cr, Mo, and their carbides and nitrides,” Physica B: Condensed Matter, vol. 358, no. 1–4, pp. 63–71, 2005. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0921452604012724 164

[2] Z. Dridi, B. Bouhafs, P. Ruterana, and H. Aourag, “First-principles calculations of vacancy effects on structural and electronic properties of TiCx and TiNx,” J. Phys.: Condens. Matter, no. 14, pp. 10 237–10 249, 2002. 164

[3] I. Pollini, A. Mosser, and J. C. Parlebas, “Electronic, spectroscopic and elastic properties of early transition metal compounds,” Physics Reports, vol. 355, no. 1, pp. 1–72, 2001. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0370157301000187 164

[4] C. Kral, W. Lengauer, D. Rafaja, and P. Ettmayer, “Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides,” Journal of Alloys and Compounds, vol. 265, no. 1–2, pp. 215–233, 1998. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925838897002971 164

[5] G. Casiano, W. López, and J. Rodríguez, “Estabilidad Relativa del Compuesto CrN,” Revista de la Sociedad Colombiana de Física, vol. 41, no. 3, pp. 580–583, 2009. 164

[6] O. Arbouche, B. Belgoumène, B. Soudini, and M. Driz, “First principles study of the relative stability and the electronic properties of GaN,” Computational Materials Science, vol. 47, no. 2, pp. 432–438, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0927025609003516 164

[7] J.-M. Wagner and F. Bechstedt, “Properties of strained wurtzite GaN and AlN: Ab initio studies,” Phys. Rev. B, vol. 66, no. 11, p. 115202, Sep. 2002. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.66.115202 164

[8] V. Rawat and T. Sands, “Growth of TiN/GaN metal/semiconductor multilayers by reactive pulsed laser deposition,” Journal of Applied Physics, vol. 100, no. 6, p. 64901, 2006. [Online]. Available: http://link.aip.org/link/?JAP/100/064901/1 164

[9] V. Rawat, D. N. Zakharov, E. A. Stach, and T. D. Sands, “Pseudomorphic stabilization of rocksalt GaN in TiN/GaN multilayers and superlattices,” Phys. Rev. B, vol. 80, no. 2, p. 24114, Jul. 2009. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.80.024114 165

[10] K. Schwarz, “DFT calculations of solids with LAPW and WIEN2k,” Journal of Solid State Chemistry, vol. 176, no. 2, pp. 319–328, 2003. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022459603002135 165

[11] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, Oct. 1996. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.77.3865 166

[12] R. González, W. López, and J. A. R. M., “First-principles calculations of structural properties of GaN : V,” Solid State Communications, vol. 144, no. 3–4, pp. 109–113, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0038109807006084 166

[13] L. Mancera, J. A. Rodríguez, and N. Takeuchi, “Theoretical study of the stability of wurtzite, zinc-blende, NaCl and CsCl phases in group IIIB and IIIA nitrides,” physica status solidi (b), vol. 241, no. 10, pp. 2424–2428, 2004. [Online]. Available: http://dx.doi.org/10.1002/pssb.200404910 166

[14] N. Takeuchi, “First-principles calculations of the ground-state properties and stability of ScN,” Phys. Rev. B, vol. 65, no. 4, p. 45204, 2002. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.65.045204 166

[15] S.-H. Jhi, J. Ihm, S. G. Louie, and M. L. Cohen, “Electronic mechanism of hardness enhancement in transition-metal carbonitrides,” Nature, vol. 399, no. 6732, pp. 132–134, 1999. [Online]. Available: http://dx.doi.org/10.1038/20148 171

[16] J. Rufinus, “Magnetic properties of M-doped (M=Ti, V, or Cr) GaN clusters,” Journal of Magnetism and Magnetic Materials, vol. 310, no. 2, Part 2, pp. 1666–1668, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0304885306017239 172