Review of the state of art of IR-Ultra-Wideband and simulation of Impulse Responce of the IEEE 802.15.4a channel

Main Article Content

Julio Suárez Páez
Gonzalo Llano Ramírez

Keywords

Ultra–Wideband (UWB), Impulse Radio Power, Dalay Profile, Saleh–Venezuela Model, Nakagami–m Fading, Statistical modeling of IR–UWB channels.

Abstract

This paper reviews the state of the art of the technology based in channels of Ultra Wide band (UWB Ultra–Wideband) focusing on its regulation, standardization, basic applications, IEEE 802.15.4a channel model and simulation of the impulsive response of this type of channel. Also, it aims to introduce the reader to the technologies based on IR–UWB channels and the parameters for modeling and simulation of IEEE 802.15.4a UWB channel.

PACS: 41.20.Jb, 42.25.Dd

Downloads

Download data is not yet available.
Abstract 798 | PDF (Español) Downloads 182

References

[1] Mohammad Ghavami, Lachlan Michael and Ryuji Kohno. Ultra–wideband signal and systems in communications engineering, 2nd edition, ISBN 978–0–470– 02763–9. Wiley, 2007.

[2] Moe Z. Win and Robert A. Scholtz. Impulse radio: how it works. IEEE Communications letters, ISSN 1089–7798, 2(2), 36–38 (1998).

[3] Marco Chiani and Andrea Giorgetti. Coexistence Between UWB and Narrow– Band Wireless Communication Systems. Proceedings of the IEEE, ISSN 0018– 9219, 97(2), 231–254 (2009).

[4] G. F. Ross. The transient analysis of multiple beam feed networks for array sys- tems. PhD dissertation, Polytechnic Institute of Brooklyn, 1963.

[5] Gerald F. Ross. Transmission and reception system for generating and receiving baseband duration pulse signals for short base–band pulse communication system. United States patent, 3,728,632, 1973.

[6] Terence W. Barrett. History of Ultra–Wideband (UWB) radar & communications: pioneers and innovators. National Telecommunications and Information Administration, 1–29 (2000).

[7] Federal Communications Commission. Revision of Part 15 of the commission’s rules regarding ultra–wideband transmission systems. First report and order , 1– 118 (2002).

[8] W. Pam Siriwongpairat and K. J. Ray Liu. Ultra–Wideband Communications Systems: Multiband OFDM Approach, ISBN 978–0–470–07469–5. Wiley, 2007.

[9] Ghobad Heidari. WiMedia UWB: Technology Of Choice For Wireless Usb and Bluetooth, ISBN 978–0–470–51834–2.Wiley, 2008.

[10] WiMedia Alliance. The Worldwide UWB Platform for Wireless Multimedia, 1– 19 (2007).

[11] ISO. ISO/IEC 26907:2007, Information technology – Telecommunications and information exchange between systems – High Rate Ultra Wideband PHY and MAC Standard, 2007.

[12] IEEE. 802.15 WPAN Low Rate Alternative PHY Task Group 4a (TG4a). IEEE TG4a, 2003.

[13] IEEE. 802.15.4a–2007, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY). Specifications for Low–Rate Wireless Personal Area Networks (LR–WPANs), ISBN 978–0–7381–5584–5, 1–203 (2007).

[14] IEEE. 802.15.4a–2003, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY). Specifications for Low–Rate Wireless Personal Area Networks (LR–WPANs), ISBN 0–7381–3677–5, 1–679 (2003).

[15] IEEE. 802.15.4a-2006, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), ISBN 0–7381–4997–7, 1–305 (2006).

[16] R. A. Scholtz. Multiple access with time–hopping impulse modulation. Military Communications Conference, 1993. MILCOM’93. Conference record. ’Communications on the Move’, ISBN 0–7803–0953–7, 263–267 (1993).

[17] M. L. Welborn. System considerations for ultra–wideband wireless networks. Radio and Wireless Conference, 2001. RAWCON 2001, ISBN 0–7803–7189–5, 5–8 (2001).

[18] I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby and J. Haapola. UWB wireless sensor networks: UWEN – a practical example. IEEE Communications Magazin, ISSN 0163–6804, 42(12), S27–S32 (2004).

[19] J. D. Parsons. The Mobile Radio Propagation Channel, 2dn edition, ISBN 978– 0471988571. Wiley.

[20] Gonzalo Llano, Juan Reig, Lorenzo Rubio and Alexis García. Ultra–wideband Frequency Analysis: State–of–the–art, Measurements and Modeling. Waves, ISSN 1889–8297, 147–154 (2009).

[21] Theodore Rappaport. Wireless Communications: Principles and Practice, 2nd Edition, ISBN 0130422320. Pearson Education, Inc., 2001. Referenciado en 111

[22] Dajana Cassioli, Moe Z. Win and Andreas F. Molisch,. The ultra-wide ban- dwidth indoor channel: from statistical model to simulations. IEEE Journal on Selected Areas in Communications, ISSN 0733–8716, 20(6), 1247-1257 (2002).

[23] H¨am¨al¨ainen Oppermann Ian and Linatti Jari. Ultra–wideband Theory and Ap- plications, ISBN 978–0–471–71521–4,Wiley, 2006.

[24] Gonzalo Llano, Juan Reig and Lorenzo Rubio. Modeling and Analysis in Frequency of the UWB Channel with Lognormal Statistics for MB–OFDM. IEEE Latin America Transactions, ISSN 1548–0992, 7(1), 33–41 (2009).

[25] Sanit Teawchim and Sathapom Promwong. Comparison of UWB receiver perfor- mance with template waveform broadband wireless system. International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. ECTI-CON 2009. 6th I, ISBN 978–1–4244–3387–2, 2, 936–939 (2009).

[26] Xuemin Shen, Mohsen Guizani, Robert Caiming Qiu and Tho Le-Ngoc. Ultra– Wideband Wireless Communications and Networks, ISBN 978–0–470–01144–7. Wiley, 2006,

[27] Andreas F. Molisch, Kannan Balakrishnan, Dajana Cassioli, Chia–Chin Chong, Shahriar Emami, Andrew Fort,Johan Karedal, Juergen Kunisch, Hans Schantz, Ulrich Schuster and Kai Siwiak. IEEE 802.15.4a channel model–final report . IEEE TG4a, 1–40 (2003).

[28] Harry R. Anderson. Fixed Broadband Wireless System Design, ISBN 978–0– 470–84438–0, Wiley, 2003.

[29] Sun Xu, Kim Chee Wee, B. Kannan and Francois Chin. Modified S–V channel model evaluation. IEEE TG4a, 2005.

[30] A. Banerjee, P. Burlina and F. Alajaji. Image Segmentation and Labeling Using the Polya Urn Model . IEEE Transactions on Image Processing, ISSN 1057–7149, 8(9), 1243–1253 (1999).

[31] Massimiliano Pieraccini and Filippo Parrini. The Orfeus Project (Optimised Ra- dar for Finding Every Utility in the Street). IEEE International Geoscience and Remote Sensing Symposium, ISBN 978–1–4244–2807–6, 2008.

[32] Lee Kwan-Ho, Chen Chi-Chih, L. Teixeira and Lee Robert. Modeling and Inves- tigation of a Geometrically Complex UWB GPR Antenna Using FDTD. IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, 52(8), 1983–1991 (2004).

[33] V. Kovalenko, A. Yarovoy and L. P. Ligthart. Object detection in 3D UWB subsurface images. First European Radar Conference, 2004. EURAD, ISBN 1– 58053–993–9, 237–240 (2004).

[34] M. Bury, Y. Yashchyshyn and J. Modelski. Frequency domain measurements for an UWB imaging system. International Conference on Microwaves Radar and Wireless Communications, 2008. MIKON 2008, ISBN 978–83–906662–8–0, 1–4 (2008).

[35] B.J. Harker, A. D. Chadwick and G. L. Harris. Ultra–wideband 3–Dimensional imaging (UWB 3D imaging), Roke Manor Research Limited, 1–8 (2008).

[36] V. Vebkatasubramanian and H. Peiguo Liu Leung. Chaos based UWB imaging radar for homeland security. IEEE Conference on Cybernetics and Intelligent Systems, ISBN 0–7803–8643–4, 1, 351–355 (2004).

[37] G. Varotto and E. M. Staderini. Optimization criteria in the design of medical UWB radars in compliance with the regulatory masks. IEEE Biomedical Circuits and Systems Conference, 2007. BIOCAS 2007, ISBN 978–1–4244–1524–3, 53–58 (2007).

[38] G. Varotto and E. M. Staderini. A 2D simple attenuation model for EM waves in human tissues: Comparison with a FDTD 3D simulator for UWB medical radar . IEEE International Conference on Ultra–Wideband, 2008. ICUWB 2008, ISBN 978–1–4244–2216–6, 3, 1–4 (2008).

[39] Bin Xia and Nan Xie. Pulse Design Methods for UWB Vehicular Radar . 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008. WiCOM ’08, ISBN 978–1–4244–2107–7, 1–3 (2008).

[40] Xi Li, Zhiguo Wang, Yuanchun Fei and Dechun Guo. The Interval Modulation System For The Ultra–Wideband Vehicular Radar . 6th International Conference on ITS Telecommunications Proceedings, 2006, ISBN 0–7803–9587–5, 282–285 (2006).

[41] W. Aldeeb, Xiang Weidong and P. Richardson. A Study on the channel and BER–SNR performance of ultra wide band systems applied in commercial vehicles. IEEE Sarnoff Symposium, 2007, ISBN 978–1–4244–2483–2, 1–5 (2007).

[42] Hanbing Shen, Weihua Zhang, Xizhi An, Seok ho Kim, Wei Liu and Kyung sup Kwak. A new multiple access protocol for time–hopping UWB ad–hoc wireless networks. IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005, ISBN 0–7803–9538–7, 2, 842–845 (2005).

[43] Enzo Baccarelli, Mauro Biagi, Cristian Pelizzoni and Nicola Cordeschi. Optimal MIMO UWB–IR Transceiver for Nakagami–fading and Poisson–Arrivals. Journal of Communications, ISSN 1796–2021, 3(1), 27–40 (2008).

[44] Junsheng Liu Ghavami, M. Xiaoli Chu Allen and W. B. Malik. Diversity Analy- sis of Multi–antenna UWB Impulse Radio Systems with Correlated Propagation Channels. IEEE Conference Wireless Communications and Networking 2007. WCNC 2007, ISBN 1–4244–0658–7, 1593–1598 (2007).

[45] Rui Xu, Y. Jin and C. Nguyen. Power–Efficient Switching–Based CMOS UWB Transmitters for UWB Communications and Radar Systems. IEEE Transactions on Microwave Theory and Techniques, ISSN 0018–9480, 54(8), 3271–3277 (2006).

[46] C. Senger and T. Kaiser. BeamLoc–an approach for NLoS localization in UWB indoor environments. The Institution of Engineering and Technology Seminar on Ultra Wideband Systems, Technologies and Applications, ISBN 0–86341–625–X, 176–180 (2006).

[47] Narongsak Manositthichai and Sathaporn Promwong. A statistical UWB trans- mission networks in an indoor environment for PAN systems. 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009. ECTI–CON 2009, ISBN 978–1–4244– 3387–2, 2, 918–921 (2009).

[48] Manuel Flury, Ruben Merz, Jean–Yves Le Boudec and Julien Zory . Performance Evaluation of an IEEE 802.15.4a Physical Layer with Energy Detection and Multi–User Interference. IEEE International Conference on Ultra–Wideband, 2007. ICUWB 2007, ISBN 978–1–4244–0521–3, 663–668 (2007).

[49] L. Happ, K. A. Kappra, M. A. Ressler, J. P. Sichina, K. Sturgess and F. Le. Low- frequency ultra-wideband synthetic aperture radar 1995 BoomSAR tests. Proceedings of the 1996 IEEE National Radar Conference, ISBN 0–7803–3145–1, 54–59 (1996).

[50] K. Watanabe, S. Hari, K. Ohno and T. Ikegami. Experiments on Shadow Effects of Body and Effective Paths for UWB Transmission in BAN. International Symposium on Communications and Information Technologies, 2008. ISCIT 2008, ISBN 978–1-4244–2335–4, 232–237 (2008).

[51] P. Gandolfo, D. Radovic, M. Savic and D. Simic. IEEE 802.15.4a UWB-IR ra- dio system for telemedicine. IEEE International Conference on Ultra–Wideband, 2008. ICUWB 2008, ISBN 978–1–4244–2216–6, 11–14 (2008).