Finite dimensional commutative K-algebras with unity

Main Article Content

Claudia Granados-Pinzón Wilson Olaya-León


This paper is devoted to the study of finite K-algebras i.e. the commutative K-algebras with unity that are finite dimensional vector space over a field K. A finite K-álgebra is direct sum of local finite K-algebras. We obtain a characterization of the local finite K-algebra K[x]/(f(x)) , show that certain finite K-álgebras are isomorphic and discompose the finite K-algebra K[x]/(f(x)) in local finite K-algebras.


Download data is not yet available.

Article Details

How to Cite
GRANADOS-PINZÓN, Claudia; OLAYA-LEÓN, Wilson. Finite dimensional commutative K-algebras with unity. Ingeniería y Ciencia | ing.cienc., [S.l.], v. 12, n. 24, p. 31-49, nov. 2016. ISSN 2256-4314. Available at: <>. Date accessed: 20 sep. 2017. doi:
Finite-dimensional algebras, sum direct, isomorphism of algebras


[1] C. Granados-Pinzón, Álgebras finitas sobre un cuerpo. La recta proyectiva. Tesis doctoral Universidad de Valladolid. Director: J.M. Aroca, 2015. [Online]. Available: 33, 34, 39, 47

[2] G. M. Morales, Métricas, compactificaciones y extensiones del cuerpo real. Tesis doctoral Universidad de Valladolid. Director: J.M. Aroca, 1996. [Online]. Available: 33, 47

[3] B. Poonen, Isomorphism types of commutative algebras of finite rank over an algebraically closed field, K. Lauter, Kristin; Ribet, Ed. American Mathematical Society, 2006. [Online]. Available: 33, 47

[4] R. Vale, Topics in finite-dimensional algebras. Cornell University, 2009. [Online]. Available: 33,47

[5] M. F. Atiyah and I. G. Macdonald, Introducción al álgebra conmutativa. Barcelona: Editorial Reverté S. A., 1980. 33, 34, 35, 47

[6] N. Bourbaki, Commutative algebra. Paris: Hermann, Publishers in Arts and Science, 1989. 33, 47

[7] D. Eisenbud, Commutative Algebra, with a view toward Algebraic Geometry. New York: Springer-Verlag, 1995. 33, 47

[8] H. Matsumura, Commutative ring theory, 2nd ed. Cambridge: Cambridge University Press, 1989. 33, 47

[9] J. A. Navarro, Algebra conmutativa básica. Badajoz: Universidad de Extremadura, 1997. 33, 47

[10] W. Murray, “Nacayama automorphisms of Frobenius algebras,” Journal of algebra, vol. 269, no. 2, pp. 599–609, 2003. [Online]. Available: 33, 47

[11] A. J. Lindenhovius, “Classifying finite-dimensional C*-algebras by posets of their commutative C*-Subalgebras,” Int. J. Theor Phys, vol. 54, no. 12, pp. 4615–4635, 2015. [Online]. Available: 33, 47
[12] C. Heunen and A. J. Lindenhovius, “Domains of commutative C*- Subalgebras,” arXiv:1504.02730v4, p. 25, 2016. [Online]. Available: 33, 47

[13] C. Heunen, “Characterizations of categories of commutative C*-Subalgebras,” Communications in Mathematical Physics, vol. 331, no. 1, pp. 215–238, 2014. [Online]. Available: 33, 47

[14] J. Hamhalter, “Isomorphisms of ordered structures of abelian C∗- subalgebras of C∗-algebras,” Journal of Mathematical Analysis and Applications, vol. 383, no. 2, 2011. [Online]. Available: 33, 47

[15] E. Hartmann, Planar Circle Geometries: an introduction to Moebius-, Laguerre- and Minkowski-planes. Springer-Verlag, 2004. 34, 47

[16] S. Mazuelas, Interpretación proyectiva de las geometrías métricas, equiformes e inversivas. Tesis doctoral . Director: J.M. Aroca, 2008. [Online]. Available: 34

[17] ——, “Interpretación proyectiva de las métricas del plano real,” Rev. Semin. Iberoam. Mat., vol. 3, no. VI fasc. 3, pp. 109–125, 2008. [Online]. Available: 34

[18] H. Havlicek and K. List, “A three-Dimensional Laguerre geometry and its visualization,” In proceedinhs-Dresden Symposium geometry: constructive and kinematic, vol. Institut f, pp. 122–129, 2013. [Online]. Available: 34, 47