Structural Characteristics of Colombian School of Reinforced Concrete Moment Frames With Masonry Infill

Main Article Content

Ana B Acevedo http://orcid.org/0000-0002-3869-4373 Faver N Zora Mejía http://orcid.org/0000-0003-4635-5555

Abstract

Assessment of the seismic vulnerability of the building stock of a region is a key issue for its seismic risk evaluation. Schools are an important building class as they gather a high number of people, they are important for the social development and they could be used as shelters after an emergency. This paper presents an assessment of the characteristics of 77 buildings from 28 schools of Medellín, Itagüí and Sabaneta (Colombia). Each building is a reinforced concrete frame with masonry infill. Analyzed parameters include the number of stories, building height, ground floor area, height and plan irregularity, presence of short columns, walls materials, columns and walls dimensions, soil type, designed lateral load, level of maintenance, year of construction and presence of damage or retrofit intervention. The analysis of the schools characteristics represents useful information that could be used for the estimation of the vulnerability of this building class, as well as for its seismic risk assessment. 

Downloads

Download data is not yet available.

Article Details

How to Cite
ACEVEDO, Ana B; ZORA MEJÍA, Faver N. Structural Characteristics of Colombian School of Reinforced Concrete Moment Frames With Masonry Infill. Ingeniería y Ciencia | ing.cienc., [S.l.], v. 13, n. 25, p. 209-227, apr. 2017. ISSN 2256-4314. Available at: <http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3998>. Date accessed: 20 sep. 2017. doi: https://doi.org/10.17230/ingciencia.13.25.9.
Keywords
Vulnerability; schools; seismic risk; structural characteristics and reinforced concrete
Section
Articles

References

United Nations Centre for Regional Development UNCRD. (2009). Reducing vulnerability of school children to earthquakes. A project of School Earthquake Safety Initiative (SESI). http://www.preventionweb.net/files/2951_SESIOutcomeallfinal.pdf

G. Coronel and O. A. López, “Regional seismic damage, loss and risk scenarios of Venezuelan schools buildings,” in Proceedings of the 15th World Conference on Earthquake Engineering, 2012.

B. Borzi, P. Ceresa, M. Faravelli, E. Fioniri, and M. Onida, “Definition of a prioritization procedure for structural retrofitting of Italian school buildings,” in COMPDYN 2011 III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering: An IACM Special Interest Conference, Programme. Papadrakakis M., Fragiadakis, M., Plevris, V. Corfy, Greece. European Centre for Training and Research in Earthquake Engineering, EUCENTRE, May 2011.

M. I. Verbicaro, D. H. Lang, M. Polese, G. M. Verderame, and G. Manfredi, “Development of structural vulnerability functions for schools and hospitals in Central American countries,” in Proceedings of the XIII Convegno di Ingeneria Sismica (ANIDIS), Bologna, Italy, 2009.

F. Bendimerad, “Earthquake vulnerability of school buildings in Algeria,” in Keeping Schools Safe in Earthquakes. Proceedings of the ad hoc Experts, Group Meeting on Earhtquake Safety in Schools, Paris. The Organisation for Economic Co-operation and Development, OECD, Feb. 2004. [Online]. Available: www.oecd.org/edu/schoolsafety

O. A. López, J. J. Hernández, A. Marinilli, N. Fernández, J. Domínguez, T. Baloa, G. Coronel, and S. Safina, “Seismic evaluation and retrofit of school buildings in Venezuela,” in The 14th World Conference on Earthquake Engineering, Beijing, China, Oct. 2008.

M. A. Ferreira and J. M. Poença, “Seismic Vulnerability Assessment of the Educational System of Bucharest,” in The 14th World Conference on Earthquake Engineering, Beijing, China, Oct. 2008.

Evaluación de Riesgos Naturales, ERN-AL, “Seismic risk assessment of schools in the Andean Region in South America and Central America,” International Labor Office, Tech. Rep., Apr. 2010.

H. Crowley, R. Pinho, and J. J. Bommer, “A probabilistic displacementbased vulnerability assessment procedure for earthquake loss estimation,” Earthquake Engineering, vol. 2, no. 2, pp. 173–219, Jan. 2004.

A. Hasan and A. Sözen, “Seismic vulnerability assessment of low-rise buildings in regions with infrequent earthquakes,” ACI Structural Journal, vol. 94, no. 1, pp. 31–19, Jan. 1997.

G. Grüntal, “European Macroseismic Scale,” Conseil de L,Europe, Chaiers du Centre Européen de Géodynamique et de Séismologie, Luxembourg, Tech. Rep., 1998. [Online]. Available: http://www.franceseisme.fr/EMS98_Original_english.pdf

L. F. Restrepo, M. R. Villarraga, J. D. Jaramillo, Y. Farbiarz, A. F. Vélez, D. A. Rendón, F. P. Ángel, C. P. Lalinde, F. Correa, and G. Betancur, Microzonificación y Evaluación del Riesgo Sísmico del Valle de Aburrá, Medellín. Prográficas Ltda, Dec. 2007.

Asociación Colombiana de Ingeniería Sísmica, AIS, Reglamento Colombiano de Construcción Sismo Resistente NSR-10, Asociación Colombiana de Ingeniería Sísmica, Bogotá, AIS, 2010.

Asociación Colombiana de Ingeniería Sísmica, AIS, Código Colombiano de Construcción Sismo Resistente CCCSR-84, Asociación Colombiana de Ingeniería Sísmica, Bogotá, AIS, 1984.

Asociación Colombiana de Ingeniería Sísmica, AIS, Reglamento Colombiano de Construcción Sismo Resistente NSR-98, Asociación Colombiana de Ingeniería Sísmica, Bogotá, AIS, 1998.

I. E. Bal, H. Crowley, R. Pinho, and F. Gulay, “Detailed assessment of structural characteristics of Turkish RC building stock for loss assessment models,” Soil Dynamics and Earthquake Engineering, vol. 28, no. 10, pp. 914–932, Oct. 2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0267726107001340