Development and Evaluation of a LightWeight Electronic Device for the Sampling of Volatile Organic Compounds in the Vertical Coupled to a Captive Metorological Globe

Main Article Content

M Solano Murillo http://orcid.org/0000-0001-5460-8992
W Gutiérrez López
M García Espinosa http://orcid.org/0000-0002-8180-0258
R Torres Jardón http://orcid.org/0000-0003-1874-6057

Keywords

Atmospheric instrumentation, miniaturized gas sampling, tethered balloon measurements, volatile organic compounds, photochemical age, ozone, Mexico City

Abstract

An understanding of the vertical profile of the composition of volatile organic compounds (VOCs) in polluted urban areas can help to better understand the impact of these compounds on air quality and in the development of better control strategies. To facilitate these types of measurements and they have the necessary reliability, a programmable, lightweight and lowcost VOCs miniaturized sampling device was designed and integrated, that allows to anchor several of them at different heights in the string of a captive instrumented meteorological balloon and also a start/stop control of the samplers that can be operated from the ground. Simultaneous sampling ensures that the vertical profile of the captured VOCs, represents with better certainty the expected differences in the concentration of these compounds due to the influence of the urban canopy layer and urban activity. Each sampling device consists of an electronic circuit that receives the start or stop signal of the air suction mini-pump from a master control system that is on the surface and that allows radio frequency operation. The capture of VOCs is carried out by packed cartridges with an appropriated adsorbent medium for this purpose. The feasibility of the miniaturized system was demonstrated in a short sampling campaign at the levels 0 m, 50 m, and 100 m above ground at a site southwest of the Metropolitan Area of Mexico City during April 2017. The profiles of the determined VOCs concentrations were compared with previous records obtained at the surface level and in vertical profiles using less dynamic sampling methods, demonstrating the benefit of knowing the concentration at different heights in the interpretation of atmospheric chemistry associated with these profiles.

Downloads

Download data is not yet available.
Abstract 79 | PDF (Español) Downloads 35

References

C. Cardelino and W. Chameides, “An observation-based model for analyzing ozone precursor relationships in the urban atmosphere,” Journal of the Air & Waste Management Association, vol. 45, no. 3, pp. 161–180, 1995. [Online]. Available: https://doi.org/10.1080/10473289.1995.10467356

M. Kanakidou, J. Seinfeld, S. Pandis, I. Barnes, F. Dentener, M. Facchini, R. V. Dingenen, B. Ervens, A. Nenes, C. Nielsen et al., “Organic aerosol and global climate modelling: a review,” Atmospheric Chemistry and Physics, vol. 5, no. 4, pp. 1053–1123, 2005. [Online]. Available: www.atmos-chem-phys.org/acp/5/1053/

N. Blake and D. Blake, “Tropospheric chemistry and composition| vocs: overview,” Encyclopedia of atmospheric sciences, pp. 2438–2445, 2002. [Online]. Available: https://doi.org/10.1016/S1352-2310(99)00460-4

E. Velasco, B. Lamb, H. Westberg, E. Allwine, G. Sosa, J. Arriaga-Colina, B. Jobson, M. L. Alexander, P. Prazeller, W. B. Knighton et al., “Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the valley of mexico during the mcma 2002 & 2003 field campaigns,” Atmospheric Chemistry and Physics, vol. 7, no. 2, pp. 329–353, 2007. [Online]. Available: https://doi.org/10.5194/acp-7-329-2007

R. Torres Jardon, “Comunicacion personal,” Ciudad de Mexico, 2014.

“United states environmental protection agency,” 2018. [Online]. Available: https://goo.gl/Cpww6W

W. H. Organization, UNAIDS et al., Air quality guidelines: global update 2005. World Health Organization, 2006.

J. M. Shepherd, “A review of current investigations of urban-induced rainfall and recommendations for the future,” Earth Interactions, vol. 9, no. 12, pp. 1–27, 2005. [Online]. Available: https://doi.org/10.1175/EI156.1

E. Velasco, C. Marquez, E. Bueno, R. Bernabe, A. Sanchez, O. Fentanes, H. Wohrnschimmel, B. Cardenas, A. Kamilla, S. Wakamatsu et al., “Vertical distribution of ozone and vocs in the low boundary layer of mexico city,” Atmospheric chemistry and Physics, vol. 8, no. 12, pp. 3061–3079, 2008. [Online]. Available: https://doi.org/10.5194/acp-8-3061-2008

M. Ting, W. Yue-Si, J. Jie, W. Fang-Kun, and W. Mingxing, “The vertical distributions of vocs in the atmosphere of beijing in autumn,” Science of the Total Environment, vol. 390, no. 1, pp. 97–108, 2008. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2007.08.035

A. Mahmud, P. Di, D. Mims, J. Avise, J. DaMassa, and A. Kaduwela, “Long-term measurements of summer-time ozone at the walnut grove towerunderstanding trends in the boundary layer,” in AGU Fall Meeting Abstracts, 2015.

K. Glaser, U. Vogt, G. Baumbach, A. Volz-Thomas, and H. Geiss, “Vertical profiles of o3, no2, nox, voc, and meteorological parameters during the berlin ozone experiment (berlioz) campaign,” Journal of Geophysical Research: Atmospheres, vol. 108, no. D4, pp. 1–14, 2003. [Online]. Available: https://doi.org/10.1029/2002JD002475

C. Spirig, A. Guenther, J. Greenberg, P. Calanca, and V. Tarvainen, “Tethered balloon measurements of biogenic volatile organic compounds at a boreal forest site,” Atmospheric Chemistry and Physics, vol. 4, no. 1, pp. 215– 229, 2004. [Online]. Available: https://doi.org/10.5194/acpd-3-5357-2003

H.-H. Tsai, Y.-F. Liu, C.-S. Yuan, W.-H. Chen, Y.-C. Lin, C.-H. Hung, C. Lin, Y.-H. Jen, I.-R. Ie, and H.-Y. Yang, “Vertical profile and spatial distribution of ozone and its precursors at the inland and offshore of an industrial city,” Aerosol and Air Quality Research, vol. 12, no. 5, pp. 911–922, 2012. [Online]. Available: https://doi.org/10.4209/aaqr.2012.01.0018

J. Zhang, T. Wang, W. Chameides, C. Cardelino, D. Blake, and D. Streets, “Source characteristics of volatile organic compounds during high ozone episodes in hong kong, southern china,” Atmospheric Chemistry and Physics, vol. 8, no. 16, pp. 4983–4996, 2008. [Online]. Available: https://doi.org/10.5194/acp-8-4983-2008

J. Greenberg, J. Peñuelas, A. Guenther, R. Seco, A. Turnipseed, X. Jiang, I. Filella, M. Estiarte, J. Sardans, R. Ogaya et al., “A tethered-balloon ptrms sampling approach for surveying of landscape-scale biogenic voc fluxes,” Atmospheric Measurement Techniques, vol. 7, no. 7, pp. 2263–2271, 2014. [Online]. Available: https://doi.org/10.5194/amt-7-2263-2014

J. Sun, Y. Wang, F. Wu, G. Tang, L. Wang, Y. Wang, and Y. Yang, “Vertical characteristics of vocs in the lower troposphere over the north china plain during pollution periods,” Environmental Pollution, vol. 236, pp. 907–915, 2018. [Online]. Available: https://doi.org/doi.org/10.1016/j.envpol.2017.10.051

P. Daum, L. Kleinman, D. Imre, L. Nunnermacker, Y.-N. Lee, S. Springston, L. Newman, J. Weinstein-Lloyd, R. Valente, R. Imhoff et al., “Analysis of o3 formation during a stagnation episode in central tennessee in summer 1995,” Journal of Geophysical Research: Atmospheres, vol. 105, no. D7, pp. 9107–9119, 2000. [Online]. Available: https://doi.org/10.1029/1999JD900350

C.-C. Lin, C. Lin, L.-T. Hsieh, C.-Y. Chen, and J.-P. Wang, “Vertical and diurnal characterization of volatile organic compounds in ambient air in urban areas,” Journal of the Air & Waste Management Association, vol. 61, no. 7, pp. 714–720, 2011. [Online]. Available: https://doi.org/10.3155/1047-3289.61.7.714

C.-C. Chang, J.-L. Wang, C.-Y. Chang, M.-C. Liang, and M.-R. Lin, “Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies,” Chemosphere, vol. 144, pp. 484–492, 2016. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2015.08.028

F. R. Burden, I. Mckelvie, U. Förstner, and A. Guenther, Environmental monitoring handbook. McGraw-Hill New York, 2002.

T. Herbert, Circuitos Digitales y microprocesadores. Editorial Mc. Graw- Hill. Madrid, 1983.

M. Penuelas Rivas, Programacion avanzada de microcontroladores PIC. Facultad de Ingenieria, UNAM, 2009.

E. Flash-based, B. C. Microcontrollers, and W. Technology, “Cmos microcontrollers with nanowatt technology,” 2007.

D. International, “Xbee pro 900 embedded rf modules datasheet,” 2008.

R. J. Tocci and N. S. Widmer, Sistemas digitales principios y aplicaciones. Pearson Educacion, 2003.

S. Ag, “Siemens transistors data book 1980-81,” Tech. Rep., 1980.

G. Denver, “Rc-material,” 2018. [Online]. Available: https://www.gd-thomas.com/en/downloads/technical-library

“Rc-material,” 2018. [Online]. Available: https://www.rcmaterial.com

U. S. E. P. Agency, “Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Second Edition Compendium Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes,” no. January, 1999.

D. Helmig, “Ozone removal techniques in the sampling of atmospheric volatile organic trace gases,” Atmospheric Environment, vol. 31, no. 21, pp. 3635– 3651, 1997.

W. Gutierrez, M. Garcia, V. O. Magaña, and J. A. Escalante, “Diseno y construccion de un globo meteorologico cautivo instrumentado,” Ingenieria y ciencia, no. 5, pp. 29–42, 2007.

“El ozono y la calidad del aire. secretaria del medio ambiente. gobierno de la ciudad de mexico,” 2018. [Online]. Available: https://goo.gl/gQmhJU

K. M. Wagstrom and S. N. Pandis, “Determination of the age distribution of primary and secondary aerosol species using a chemical transport model,” Journal of Geophysical Research: Atmospheres, vol. 114, no. D14, 2009. [Online]. Available: https://doi.org/10.1029/2009JD011784

C. Warneke, J. A. De Gouw, P. M. Edwards, J. S. Holloway, J. B. Gilman, W. C. Kuster, M. Graus, E. Atlas, D. Blake, D. R. Gentner et al., “Photochemical aging of volatile organic compounds in the los angeles basin: Weekday-weekend effect,” Journal of Geophysical Research: Atmospheres, vol. 118, no. 10, pp. 5018–5028, 2013. [Online]. Available: https://doi.org/10.1002/jgrd.50423

A. I. Skorokhod, E. V. Berezina, K. B. Moiseenko, N. F. Elansky, and I. B. Belikov, “Benzene and toluene in the surface air of northern eurasia from troica-12 campaign along the trans-siberian railway,” Atmospheric Chemistry and Physics, vol. 17, no. 8, pp. 5501–5514, 2017. [Online]. Available: https://doi.org/10.5194/acp-17-5501-2017

M. Semadeni, D. W. Stocker, and J. A. Kerr, “The temperature dependence of the oh radical reactions with some aromatic compounds under simulated tropospheric conditions,” International journal of chemical kinetics, vol. 27, no. 3, pp. 287–304, 1995. [Online]. Available: https://doi.org/10.1002/kin.550270307

J. M. Roberts, F. C. Fehsenfeld, S. C. Liu, M. J. Bollinger, C. Hahn, D. L. Albritton, and R. E. Sievers, “Measurements of aromatic hydrocarbon ratios and nox concentrations in the rural troposphere: Observation of air mass photochemical aging and nox removal,” Atmospheric Environment (1967), vol. 18, no. 11, pp. 2421–2432, 1984.

E. Apel, L. Emmons, T. Karl, F. Flocke, A. Hills, S. Madronich, J. Lee-Taylor, A. Fried, P. Weibring, J. Walega et al., “Chemical evolution of volatile organic compounds in the outflow of the mexico city metropolitan area,” Atmospheric Chemistry and Physics, vol. 10, no. 5, pp. 2353–2375, 2010. [Online]. Available: https://doi.org/10.5194/acpd-9-24085-2009

J. P. Garzon, J. I. Huertas, M. Magana, M. E. Huertas, B. Cardenas, T. Watanabe, T. Maeda, S. Wakamatsu, and S. Blanco, “Volatile organic compounds in the atmosphere of mexico city,” Atmospheric Environment, vol. 119, pp. 415–429, 2015. [Online]. Available: https://doi.org/10.1016/j.atmosenv.2015.08.014

J. Zheng, M. Shao, W. Che, L. Zhang, L. Zhong, Y. Zhang, and D. Streets, “Speciated voc emission inventory and spatial patterns of ozone formation potential in the pearl river delta, china,” Environmental science & technology, vol. 43, no. 22, pp. 8580–8586, 2009. [Online]. Available: https://doi.org/10.1021/es901688e

W. P. Carter, “Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications,” California Air Resources Board Contract, pp. 07–339, 2009. [Online]. Available: https://doi.org/10.1.1.480.5788

W. P. Carter, “Development of ozone reactivity scales for volatile organic compounds,” Air & waste, vol. 44, no. 7, pp. 881–899, 1994. [Online]. Available: https://doi.org/10.1097/DAD.0000000000000730

“Sistema de monitoreo atmosferico,” 2018. [Online]. Available: https://goo.gl/rYBfuM

G. V. S. C. G. B. Magana Reyes M, Hernendez Flores AL, “Evaluacion de compuestos organicos volatiles en la zona metropolitana del valle de mexico. instituto nacional de ecologia y cambio climatico,” INECC, vol. 52, no. 5000, pp. 1–74, 2015.

B. Rappengluck, R. Schmitz, M. Bauerfeind, F. Cereceda-Balic, D. Von Baer, H. Jorquera, Y. Silva, and P. Oyola, “An urban photochemistry study in santiago de chile,” Atmospheric Environment, vol. 39, no. 16, pp. 2913–2931, 2005. [Online]. Available: https://doi.org/10.1016/j.apr.2015.06.004

H. L. Menchaca-Torre, R. Mercado-Hernandez, and A. Mendoza- Dominguez, “Diurnal and seasonal variation of volatile organic compounds in the atmosphere of monterrey, mexico,” Atmospheric Pollution Research, vol. 6, no. 6, pp. 1073–1081, 2015. [Online]. Available: https://doi.org/10.1016/j.apr.2015.06.004

C. Warneke, J. A. De Gouw, J. S. Holloway, J. Peischl, T. B. Ryerson, E. Atlas, D. Blake, M. Trainer, and D. D. Parrish, “Multiyear trends in volatile organic compounds in los angeles, california: Five decades of decreasing emissions,” Journal of Geophysical Research: Atmospheres, vol. 117, no. D21, 2012. [Online]. Available: https://doi.org/10.1016/j.apr.2015.06.004

M. Jaimes-Palomera, A. Retama, G. Elias-Castro, A. Neria-Hernandez, O. Rivera-Hernandez, and E. Velasco, “Non-methane hydrocarbons in the atmosphere of mexico city: Results of the 2012 ozone-season campaign,” Atmospheric Environment, vol. 132, pp. 258–275, 2016. [Online]. Available: https://doi.org/10.1016/j.atmosenv.2016.02.047

H. Wohrnschimmel, C. Marquez, V. Mugica, W. A. Stahel, J. Staehelin, B. Cardenas, and S. Blanco, “Vertical profiles and receptor modeling of volatile organic compounds over southeastern mexico city,” Atmospheric Environment, vol. 40, no. 27, pp. 5125–5136, 2006. [Online]. Available: https://doi.org/10.1016/j.atmosenv.2006.03.008