Floating macrophytes on the wastewater treatment: a state of the art review

Main Article Content

Jorge Martelo
Jaime A Lara Borrero


Floating macrophytes, floating plants, natural wastewater treatment, soft systems, phytoremediation, wetlands, water hyacint.


The wastewater treatments with floating macrophytes have proven effective in the remediation of waters with nutrient content, organic matter and toxic substances such as arsenic, zinc, cadmium, copper, lead, chromium, and mercury. Its importance lies in its ability to be used in rural communities due to their low consumption of conventional energy and practicality in the assembly and operation of treatment systems. Still, it has not been clarified thoroughly the processes taking place in the purification of wastewater with floating macrophytes. This article attempts to review the existing literature on floating macrophytes, thus identifying the general aspects, advantages and disadvantages of using these plants for treating wastewater. Similarly, identify the most important background since the beginning of this application. There will be described models and design criteria mostly employed, rigorously reviewing removal efficiencies of different species of floating macrophytes. Finally it will be addressed as discussed current perspectives and future challenges for the development of this technique.

PACS: 87.23.-n, 89.60.-k, 92.20.Ny, 92.40.Oj,


Download data is not yet available.
Abstract 2298 | PDF (Español) Downloads 27996


[1] J. Fernández. Manual de fitodepuración. Filtros de macrófitas en flotación. Coordinada per Jes´us Fern´andez Gonz´alez. Proyecto Life. Amb disponibilitat en. pdf a Internet: http://www. macrophytes.info/documentacion/, 2000.

[2] H. Brix and H. Schierup. The use of aquatic macrophytes in water-pollution control. In Ambio. Stockholm, volume 18, pages 100–107, 1989.

[3] M. Pérez and C. Rojo. Función depuradora de los humedales i: una revisión bibliográfica sobre el papel de los macrófitos. Boletín SEHUMED, 1:115–122, 2000.

[4] R. Miglio and M. Mellisho. Evaluaci´on de la capacidad depuradora de tres macrofitas acuáticas en pantanos artificiales para el tratamiento de aguas residuales domésticas. Editorial Agraria, page 158, 2003.

[5] S. Bolaños, J. Casas, and N. Aguirre. Análisis comparativo de la remoción de un sustrato orgánico por las macrófitas pistia stratiotes y egeria densa en un sistema batch. Gestión y Ambiente, 11(2):39–48, 2008.

[6] Lyon S. Goldman C. Gersberg R., Elkins B. Role of aquatic plants in wastewater treatment by artificial wetlands. Water Research, 20(3):363–368, 1986.

[7] J. Ellis, R. Shutes, D. Revitt, and T. Zhang. Use of macrophytes for pollution treatment in urban wetlands. Resources, conservation and recycling, 11(1-4):1– 12, 1994.

[8] S. Peterson and J. Teal. The role of plants in ecologically engineered wastewater treatment systems. Ecological Engineering, 6(1-3):137–148, 1996.

[9] Sandoval M. Celis J., Junod J. Recientes aplicaciones de la depuración de aguas residuales con plantas acu´aticas. Theoria, 14:17–25, 2005.

[10] J. Fernández. Filtro autoflotante de macrofitas para la depuración de aguas residuales. pages 171–180, 2001.

[11] C. Frers. El uso de plantas acu´aticas para el tratamiento de aguas residuales. Observatorio Medioambiental, 11:301–305, 2008. 224

[12] M. A Rahman and H. Hasegawa. Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere, 85(5):633–646, 2011.

[13] N. Sáenz, M. Terrazas, L. Ortiz, M. Villavicencio, A. Figueroa, and M. Arce. Evaluación de dos parámetros bioquímicos en tres macrófitas acuáticas expuestas a cobre. Polibotanica, 26:149–158, 2008.

[14] EPA. Design manual: Constructed wetlands and aquatic plant systems for municipal wastewater treatment| US EPA. http://yosemite.epa.gov/water/owrccatalog.nsf, 1988.

[15] H. Brix. Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35(5):11–18, 1997.

[16] G. Henry-Silva, A. Camargo, and M. Pezzato. Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia, 610(1):153– 160, June 2008.

[17] A. Nahlik and W. Mitsch. Tropical treatment wetlands dominated by freefloating macrophytes for water quality improvement in costa rica. Ecological Engineering, 28(3):246–257, 2006.

[18] DeBusk T. Reddy R., D’Angelo E. Oxygen transport through aquatic macrophytes: The role in wastewater treatment. Journal of Environmental Quality, 19(2):261–267, 1989.

[19] Y. Zimmels, F. Kirzhner, and A. Kadmon. Effect of circulation and aeration on wastewater treatment by floating aquatic plants. Separation and Purification Technology, 66(3):570–577, 2009.

[20] K. R. Reddy and T. A. DeBusk. State-of-the-art utilization of aquatic plants in water pollution control. Water science and technology, 19(10):61–79, 1987.

[21] K. R. Reddy and W. F. DeBusk. Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: II. azolla, duckweed, and salvinia. Economic Botany, 39(2):200–208, April 1985.

[22] Reddy K. Nutrient removal potential of selected aquatic macrophytes. Journal of Environmental Quality, 14(4):459–462, 1985.

[23] Maine M. Hadad H. Phosphorous amount in floating and rooted macrophytes growing in wetlands from the middle paran´a river floodplain (Argentina). Ecological Engineering, 31(4):251–258, 2007.

[24] Condori L. Delgadillo M. Planta de tratamiento de aguas residuales con macrófitas para comunidades cercanas al lago titicaca. Journal Boliviano de Ciencias, 7(21):63–66, 2010.

[25] C. Rodriguez, M. Diaz, L. Guerra, and J. Hernandez. Acción depuradora de algunas plantas acu´aticas sobre las aguas residuales. pages 1–5, 1996.

[26] Y. Zimmels, F. Kirzhner, and A. Malkovskaja. Application of eichhornia crassipes and pistia stratiotes for treatment of urban sewage in israel. Journal of environmental management, 81(4):420–428, 2006.

[27] Wilkie A. Sooknah R. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 22(1):27–42, 2004.

[28] G. Banerjee and S. Sarker. The role of salvinia rotundifolia in scavenging aquatic pb (II) pollution: a case study. Bioprocess and Biosystems Engineering, 17(5):295–300, 1997.

[29] M. Delgado, M. Bigeriego, and E. Guardiola. Uptake of zn, cr and cd by water hyacinths. Water Research, 27(2):269–272, 1993.

[30] I. Schneider and J. Rubio. Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environmental Science & Technology, 33(13):2213– 2217, 1999.

[31] G. Satyakala and K. Jamil. Studies on the effect of heavy metal pollution on pistia statiotes l.(water lettuce). Indian Journal of Environmental Health, 39(1):1–7, 1997.

[32] M. A Maine, M. V Duarte, and N. L Su˜n´e. Cadmium uptake by floating macrophytes. Water research, 35(11):2629–2634, 2001.

[33] N. Boniardi, R. Rota, and G. Nano. Effect of dissolved metals on the organic load removal efficiency of lemna gibba. Water Research, 33(2):530–538, 1999.

[34] M. Meerhoff and N. Mazzeo. Importancia de las plantas flotantes libres de gran porte en la conservaci´on y rehabilitaci´on de lagos someros de sudamérica. Ecosistemas, 13(2):13–22, 2004.

[35] A. Flórez, A. Otero, A. Segura, and W. Sariego. Evaluación de macrófitas flotantes en el tratamiento de aguas residuales en un tramo del canal de drenaje de 1E de montería. Temas Agrarios, 1(2):61–70, 1996.

[36] L. Barba. Fitoremediación en el tratamiento de aguas residuales con metales pesados. Universidad del Valle, pages 1–17, 2002.

[37] Jovanovic L. Nesic N. Potential use of water hyacinth (E. crassipes) for wastewater treatment in serbia. Journal of Wastewater treatment using Aquatic plant, (13):1–8, 1996.

[38] J. A Romero. Tratamiento de Aguas Residuales, Teoría y Principios de diseño. Escuela Colombiana de Ingenier´ıa, Colombia, 3 edition, 2004.

[39] T. R. Headley and C. C. Tanner. Floating treatment wetlands: an innovative option for stormwater quality applications. 2008.

[40] C. C Tanner and T. R Headley. Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecological Engineering, 37(3):474–486, 2011.

[41] V. K Mishra and B. D. Tripathi. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource technology, 99(15):7091– 7097, 2008.

[42] S. Venkata Mohan, G. Mohanakrishna, P. Chiranjeevi, D. Peri, and P. N. Sarma. Ecologically engineered system (EES) designed to integrate floating, emergent and submerged macrophytes for the treatment of domestic sewage and acid rich fermented-distillery wastewater: Evaluation of long term performance. Bioresource technology, 101(10):3363–3370, 2010.

[43] Isa M. Malakahmad A. Kutty S., Ngatenah S. Nutrients removal from municipal wastewater treatment plant effluent using eichhornia crassipes. World Academy
of Science, Engineering and Technology, 60:826–831, 2009.

[44] B. Tripathi and C. Shukla. Biological treatment of wastewater by selected aquatic plants. Environmental Pollution, 69:69–78, 1991.

[45] C. Paris, H. Hadad, M. A. Maine, and N. Su˜ne. Eficiencia de dos macr´ofitas flotantes libres en la absorci´on de metales pesados. Limnetica, 24(3-4):237–244, 2005.

[46] P. Miretzky, A. Saralegui, and A. F Cirelli. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos aires, argentina). Chemosphere, 57(8):997–1005, 2004.

[47] Fox J. Harvey R. Nutrient removal using lemna minor. Water Pollution Control Federation, 45(9):1928–1938, 1973. ArticleType: research-article / Issue Title: Annual Conference Issue / Full publication date: Sep., 1973 / Copyright 1973 Water Environment Federation.

[48] G. Rahmani and S. Sternberg. Bioremoval of lead from water using lemna minor. Bioresource Technology, 70(3):225–230, 1999.

[49] A. Priya, K. Avishek, and G. Pathak. Assessing the potentials of lemna minor in the treatment of domestic wastewater at pilot scale. Environmental Monitoring and Assessment, 2011.

[50] Y. Kara. Bioaccumulation of copper from contaminated wastewater by using lemna minor. Bulletin of Environmental Contamination and Toxicology, 72(3):467–471, 2004.

[51] A. Hernández, R. Soto, A. Esquivel, J. Rangel, and P. Martínez. Desarrollo de un modelo a escala empleando macrófitas, para el tratamiento de aguas de los canales de xochimilco. Veracruz, Mexico, 2001.

[52] N. Ran, M. Agami, and G. Oron. A pilot study of constructed wetlands using duckweed (Lemna gibba l.) for treatment of domestic primary effluent in israel. Water Research, 38(9):2241–2248, 2004.

[53] J. Zirschky and S. Reed. The use of duckweed for wastewater treatment. Journal Water Pollution Control Federation), 60(7):1253–1258, 1988. ArticleType: research-article / Full publication date: Jul., 1988 / Copyright 1988 Water Environment Federation.

[54] Chen H. Chang Z. Zou H. Xian Q., Hu L. Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system. Journal of environmental management, 91(12):2657–2661, 2010.

[55] E. A–bek and H. Hasar. Role of duckweed (Lemna minor l.) harvesting in biological phosphate removal from secondary treatment effluents. Fresenius Environmental Bulletin, 11(1):27–29, 2002.

[56] M. Chassany. Eichhornia crassipes: production in repeated harvest systems on waste water in the languedoc region (France). Biomass, 7(2):135–160, 1985.