CWLFM high range resolution radar for ISAR imaging without motion compensation
Main Article Content
Keywords
CWLFM, radar images, ISAR, doppler, ships, motion compensation
Abstract
Over the last years new radar systems uses have been arisen, both civil and military field. These further uses demand more data about the radar targets. Up to now, was enough to know its location, rough velocity and an approximate motion direction, even though, now there is a growing need of security and control, which requires higher accuracy measuring these targets’s characteristics, even to obtain a “radar image” trying to classify or identify it.This article explains how to obtain ISAR radar images, especially using a Continuous Wave Linear Frequency Modulated Radar (CWLFM), not only in a theoretical way but also showing the results achieved in a lot of different experiments made during a four years research–project sponsored by the Spanish Ministry of Science and Technology, emphasizing the high quality of the images obtained, and also, that any kind of control or collaboration was expected from the target. Making the result more important from a practical point of view, opening up much more possible applications to radar systems.
PACS: 84.40.Xb
MSC: 65T50
Downloads
References
[2] J. L. Jiménez, J. Gismero, J. M. Pardo and D. Ramírez. Large time–bandwidth product and low phase noise LFM signal generation for high resolution radar . International Radar Conference, ISBN 1–58053–993–9, Toulouse–France, 11–16 (October 2004).
[3] E. Adler, J. Clark, M. Conn, Phu Phuong, B. Scheiner. Low–cost enabling technology for multimode radar requirements. Proceedings of the 1998 IEEE Radar Conference, 1998, RADARCON 98, ISBN 0–7803–4492–8, 50–55 (11–14 May 1998).
[4] Amin K. Ezzeddine. Advances in Microwave & Millimeter–wave Integrated Circuits. National Radio Science Conference, 2007, NRSC 2007, ISBN 977–5031–86–9, 1–8 (13–15 March 2007).
[5] Nadav Levanon and Eli Mozeson. Radar Signals, ISBN 9780471663072. John Wiley & Sons, 2004.
[6] Merrill I. Skolnik. Radar Handbook, 2nd edition, ISBN 007057913X. McGraw–Hill, 1990.
[7] K. B. Eom and R. Chellappa. Noncooperative target classification using hierarchical modeling of high–range resolution radar signatures. IEEE transactions on signal processing, ISSN 1053-587X, 45(9), 2318–2327 (September 1997).
[8] K. B. Eom. Time–varying autoregressive modeling of HRR radar signatures. IEEE transactions on aerospace & electronic systems, ISSN 0018-9251, 35(3), 974—988 (July 1999).
[9] Cristina Carmona Duarte, B. Pablo Dorta Ñaranjo, Alberto Asensio López and Álvaro Blanco del Campo. High resolution CWLFM radar for vessel detection and identification for maritime border security. Conference on Security Technology, 2005. CCST ’05. 39th Annual 2005 International Carnahan, ISBN 0-7803-9245-0, Gran Canaria–Spain, 304–307 (October 2005).
[10] A. Asensio López, A. Blanco del Campo, J. GismeroMenoyo, D. Ramirez Morán, G. Torregrosa Penalva, B. P. Dorta Naranjo and C. Carmona Duarte. High range- resolution radar scheme for imaging with tunable distance limits. IEE Electronics letters, ISSN 0013-5194, 40(17), 1085–1086 (19 August 2004).
[11] W. F. Gabriel. Superresolution techniques and ISAR imaging. Proceedings of the 1989 IEEE National Radar Conference 1989, 48–55 (29–30 March 1989).
[12] S. Haykin. Radar vision. Record of the IEEE 1990 International Radar Conference, 585–588 (7–10 May 1990).
[13] A. Blanco del Campo, A. Asensio López, B. P. Dorta Naranjo, J. Gismero Menoyo, D. Ramírez Morán and C. Carmona Duarte. Vehicle control classification and identification through ISAR imaging. European Radar Conference 2005, EURAD 2005, ISBN 2–9600551–3–6, París, 65–68 (6–7 October 2005).
[14] A. Blanco del Campo, A. A. López, B. P. D. Naranjo, J. G. Menoyo, D. R. Morán and C. C. Duarte. CWLFM millimeter–wave radar for ISAR imaging with medium range coverage. 2005 IEEE International Radar Conference, ISBN 0–7803–8881–X, 933-938 (9–12 May 2005).
[15] Chen Chung Ching and H. C. Andrews. Target–Motion–Induced Radar Imaging. IEEE Transactions on Aerospace & Electronic Systems, ISSN 0018-9251, 1, 2–14 (January 1980).
[16] J. M. Muñoz Ferreras, F. Pérez Martínez, J. Calvo Gallego, A. Blanco del Campo, A. Asensio López and B. P. Dorta Naranjo. Focused ISAR images of maritime targets using a high resolution LFMCW millimeter–wave radar . IEEE Mediterranean Electrotechnical Conference, 2006. MELECON 2006, ISBN 1–4244–0087–2, 521–524 (16–19 May 2006).
[17] J. M. Muñoz Ferreras, J. Calvo Gallego, F. Pérez Martínez, A. Blanco del Campo, A. Asensio López and B. P. Dorta Naranjo. Motion compensation for ISAR based on the shift-and-convolution algorithm. 2006 IEEE Conference on Radar, ISBN 0-7803-9496-8, 5 (24–27 April 2006).
[18] S. O. Piper. Homodyne FMCW radar range resolution effects with sinusoidal nonlinearities in the frequency sweep. Record of the IEEE 1995 International Radar Conference, ISBN 0–7803–2121–9, 563–567 (8–11 May 1995).
[19] R. Bhalla and Hao Ling. Fast inverse synthetic aperture radar image simulation of complextargets using ray shooting. IEEE International Conference Image Processing, 1994. Proceedings. ICIP-94, ISBN 0–8186–6952–7, 1, 461–465 (13–16 November 1994).
[20] M. Hagelen, A. Wahlen and T. Brehm. ISAR imaging of flying helicopters at millimeter–wave frequencies. First European Radar Conference, 2004. EURAD, ISBN 1–58053–993–9, 265–268 (2004).
[21] Victor C. Chen and Hao Ling. Time–Frequency Transform for Radar Imaging and Signal Analysis, ISBN 978–1580532884. Artech House Publishers, Morwood MA, 2002.
[22] Qun Zhang and Tat Soon Yeo. Three–dimensional SAR imaging of a ground moving target using the InISAR technique. IEEE transactions on Geoscience and Remote Sensing, ISSN 0196–2892, 42(9), 1818–1828 (September 2004).
[23] Sang Ho Yoon, Byungwook Kim and Young Soo Kim. Helicopter classification using time–frequency analysis. IEE Electronics letters, ISSN 0013-5194, 36(22), 1871–1872 (26 October 2000).
[24] J. Muñoz Ferreras, F. Pérez Martínez and M. Burgos García. Helicopter classification with a high resolution LFMCW Radar . IEEE transactions on aerospace and electronic systems, Accepted for publication.
[25] LingWang, Daiyin Zhu and Zhaoda Zhu Study on airborne ISAR imaging of ship targets. Proceedings 2004 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’04, ISBN 0–7803–8742–2, 6, 3934–3937 (20–24 September 2004).
[26] S. Musman, D. Kerr and C. Bachmann. Automatic recognition of ISAR ship images. IEEE Transactions on Aerospace & Electronic Systems, ISSN 0018-9251, 32(4), 1392–1404 (October 1996).
[27] D. Pastina, A. Montanari and A. Aprile. Motion estimation and optimum time selection for ship ISAR imaging. Proceedings of the 2003 IEEE Radar Conference, ISSN 1097–5659, 5–8 (7–14 May 2003).
[28] V. C. Chen and W. J. Miceli. Simulation of ISAR imaging of moving targets. IEE Proceedings Radar, Sonar & Navigation, ISSN 1350–2395, 148(3), 160–166 (June 2001).
[29] Donald R. M. Wehner. High resolution radars, 2nd edition, ISBN 0890067279. Artech house, 1995.
[30] F. PérezMartínez, A. Asensio López, J. GismeroMenoyo, J. I. AlonsoMontes, F. Casanova and J. Monje. ARIES: a high–resolution shipboard radar . Proocedings of the IEEE Radar Conference 2002, ISBN 0–7803–7357–X, 148–153 (May 2002).
[31] Pengfei Du, Ziyue Tang, Yongliang Wang and Yongjian Sun. Ship wakes detection in SAR images based on the joint radon transform and entropy. International Conference on Radar 2006, CIE ’06, ISBN 0–7803–9582–4, 1–4 (October 2006).
[32] Yingjian Liu, Mingqiang Fang, Qian Feng and Laibu Wang. An automatic ship detection system using ERS SAR images. Proceedings 2003 IEEE International Geoscience and Remote Sensing Symposium, 2003, IGARSS ’03, ISBN 0–7803– 7929–2, 4, 21–25, 2656–2658 (July 2003).