An Architecture for the Conceptual Design of Underwater Exploration Vehicles

Main Article Content

Rafael E Vásquez
Julio C Correa
Juan A Ramírez-Macías
Elkin A Taborda
Carlos A Zuluaga
Norha L Posada
Jorge M Londoño


ROV design, underwater exploration, robotic exploration system, autonomous underwater vehicles


This paper addresses an architecture for the conceptual design of remotely operated vehicles (ROV). The proposed architecture is based in an extensive literature review and the experience acquired during 20 years with the development of three ROV systems that where designed for underwater inspection. The ROV is divided into five subsystems: vehicle, surface station, surface/vehicle interface, control system, and software. For each subsystem, functions and tasks are defined, components are listed, interrelations with other subsystems are established, and commonly used alternatives are proposed. The subsystem's division used for the conceptual design process allows one to avoid problems in the advanced stages of the robotic exploration system development.


Download data is not yet available.
Abstract 1139 | PDF (Español) Downloads 698 HTML (Español) Downloads 1502


R. Christ and R. Wernli, The ROV Manual. A User Guide for RemotelyOperated Vehicles, 2nd ed. Elsevier, 2013. NORSOK, NORSOK STANDARD U-102, Norwegian Technology CentreStd., 2012, 2nd Ed.

J. Ferguson and E. Jackson, "Design and development of a diesel-poweredsemisubmersible ROV," in Proceedings of the 3rd International Symposiumon Unmanned Untethered Submersible Technology, Durham, New Hampshire,1983, pp. 39–52.

G. Smith, "Development of a 5000 meter remote operated vehicle for marineresearch," in Proceedings of the IEEE OCEANS1987, 1987.

J. Newman and D. Stakes, "Tiburon: development of an ROV for oceanscience research," in Proceedings of the IEEE OCEANS1994, vol. 2, Sep 1994,pp. 483–488.

A. Frost, A. McMaster, K. Saunders, and S. Lee, "The development of aremotely operated vehicle (ROV) for aquaculture," Aquacult. Eng., vol. 15,no. 6, pp. 461 – 483, 1996.

M. Nakamura, H. Kajiwara, and W. Koterayama, "Development of an ROVoperated both as towed and self-propulsive vehicle," Ocean Eng., vol. 28,no. 1, pp. 1 – 43, 2001.

R. Gomes, A. Martins, A. Sousa, J. Sousa, S. Fraga, and F. Pereira, "A newROV design: issues on low drag and mechanical symmetry," in Proceedingsof the IEEE OCEANS2005, vol. 2, June 2005, pp. 957–962 Vol. 2.

S. Cohan, "Trends in ROV development," Mar. Technol. Soc. J., vol. 42,no. 1, pp. 38–43, 2008.

F. Cazenave, R. Zook, D. Carroll, M. Flagg, and S. Kim, "Development ofthe ROV SCINI and deployment in McMurdo sound, Antarctica." J. OceanTechnol., vol. 6, no. 3, pp. 39 – 58, 2011.

N. Cruz, A. Matos, R. Almeida, B. Ferreira, and N. Abreu, "TriMARES- a hybrid AUV/ROV for dam inspection," in Proceedings of the IEEEOCEANS2011, 2011, pp. 1–7.

A. Y. Martin, "Unmanned maritime vehicles: Technology evolution and implications,"Mar. Technol. Soc. J., vol. 47, no. 5, pp. 72–83, 2013.

G. Gereffi, L. C. Brun, J. Lee, and M. Turnipseed, "Nova Scotia's oceantechnologies," Center on Globalization, Governance & Competitiveness, DukeUniversity, Tech. Rep., 2012.

T. Salgado-Jimenez, J. Gonzalez-Lopez, L. Martinez-Soto, E. Olguin-Lopez,P. Resendiz-Gonzalez, and M. Bandala-Sanchez, "Deep water ROV design forthe Mexican oil industry," in Proceedings of the IEEE OCEANS2010, 2010,pp. 1–6.

L. Garcia-Valdovinos and T. Salgado-Jimenez, "On the dynamic positioningcontrol of underwater vehicles subject to ocean currents," in 8th InternationalConference on Electrical Engineering Computing Science and AutomaticControl (CCE), 2011, pp. 1–6.

P. Drews, V. Kuhn, and S. Gomes, "Tracking system for underwater inspectionusing computer vision," in 2012 International Conference on Offshoreand Marine Technology: Science and Innovation (NAVTEC), 2012, pp. 27–30.

W. Lages and V. de Oliveira, "A survey of applied robotics for the powerindustry in Brazil," in 2nd International Conference on Applied Robotics forthe Power Industry (CARPI), 2012, pp. 78–82.

J. P. Avila, D. C. Donha, and J. C. Adamowski, "Experimental model identificationof open-frame underwater vehicles," Ocean Eng., vol. 60, no. 0, pp.81 – 94, 2013.

R. Cadavid, R. Vallejo, and J. C. Zapata, "VISOR: Vehículo para investigaciónsubacuática operado remotamente," Trabajo de grado, Facultad deIngeniería Mecánica, Universidad Pontificia Bolivariana, Tech. Rep., 1995.

J. C. Correa, L. B. Gutiérrez, and L. J. Vásquez, "Consideraciones de dise-opara un vehículo subacuático controlado en forma dual: autónomamentey vía cable," in Memorias del VIII Congreso Latinoamericano de ControlAutomático. Vi-a del Mar: ACCA, 1998.

L. B. Gutiérrez, C. A. Zuluaga, J. A. Ramírez, R. E. Vásquez, D. A. Flórez,E. A. Taborda, and R. A. Valencia, "Development of an underwater remotelyoperated vehicle (ROV) for surveillance and inspection of port facilities," inProceedings of the ASME IMECE2010, 2010.

M. Vélez, V. Bernal, V. Díaz, and J. Contreras, "Generación automática decontroladores difusos: Aplicación al control de profundidad de un ROV," inMemorias del Congreso Internacional de Ingeniería Mecatrónica, 2009. D. Madero and J. J. Durán, "Dise-o de un prototipo ROV (remotely operatedvehicle) subacuático experimental," Trabajo de grado, Escuela de IngenieríaMecánica, Universidad Industrial de Santander, Tech. Rep., 2012.

W. M. Bessa, M. S. Dutra, and E. Kreuzer, "Dynamic positioning of underwaterrobotic vehicles with thruster dynamics compensation," Int.l J. Adv.Robot. Syst., vol. 10, no. 325, pp. 1–8, 2013.

B. DeWijs, "AUV/ROV propulsion thrusters," in Proceedings of the IEEEOCEANS2000, 2000, pp. 173–176.

S. M. Abu-Sharkh, Propulsion Systems for AUVs. Taylor & Francis, 2003,ch. 7, pp. 109 – 125.

Y. Li, P. Wang, L. Ai, X. Sang, and J. Bu, "Hull design and structuralanalysis of an underwater robotic vehicle," Adv. Mat. Res., vol. 291-294, pp.1917–1920, 2011.

A. D. Bowen, D. R. Yoerger, L. L. Whitcomb, and D. J. Fornari, "Exploringthe deepest depths: Preliminary design of a novel light-tethered hybrid ROVfor global science in extreme environments," Mar. Technol. Soc. J., vol. 38,no. 2, pp. 92–101, 2004.

E. E. Allmendinger, M. De La Vergne, and H. A. Jackson, HydromechanicalPrinciples. The Society of Naval Architects and Marine Engineers, 1990,ch. V, pp. 191 – 269.

J. D. Irish and W. S. Brown, The Environment. The Society of NavalArchitects and Marine Engineers, 1990, ch. III, pp. 71 –108.

J. Yuh, "Design and control of autonomous underwater robots: A survey,"Auton. Robots, vol. 8, no. 1, pp. 7–24, 2000.

R. A. Valencia, J. A. Ramírez, L. B. Gutiérrez, and M. J. García, "Modelingand simulation of an Underwater Remotely Operated Vehicle (ROV) forsurveillance and inspection of port facilities using CFD tools," in Proceedingsof the ASME OMAE2008, 2008.

J.-Y. Park, B. huan Jun, P. mook Lee, and J. Oh, "Experiments on visionguided docking of an autonomous underwater vehicle using one camera,"Ocean Eng., vol. 36, no. 1, pp. 48 – 61, 2009.

L. Marsh, J. T. Copley, V. A. Huvenne, P. A. Tyler, and the Isis ROV Facility,"Getting the bigger picture: Using precision remotely operated vehicle(rov) videography to acquire high-definition mosaic images of newly discoveredhydrothermal vents in the southern ocean," Deep Sea Research Part II:Topical Studies in Oceanography, vol. 92, no. 0, pp. 124 – 135, 2013.

S. Shen, H. Huang, C. Chao, and M. Huang, "Design and analysis of a highintensityLED lighting module for underwater illumination," Appl. OceanRes., vol. 39, no. 0, pp. 89–96, 2013.

G. Griffiths, "Steps towards autonomy: From current measurements to underwatervehicles," Meth. Oceanography, vol. 1-2, no. 0, pp. 22 – 48, 2012.

Y. Bai and Q. Bai, "Subsea engineering handbook," in Subsea EngineeringHandbook, Y. Bai and Q. Bai, Eds. Boston: Gulf Professional Publishing,2010, pp. 3 – 25.

T. Kim and J. Yuh, "Development of a real-time control architecture for asemi-autonomous underwater vehicle for intervention missions," Control Eng.Pract., vol. 12, no. 12, pp. 1521–1530, 2004.

O. Hasvold, N. J. Storkersen, S. Forseth, and T. Lian, "Power sources forautonomous underwater vehicles," J. Power Sources, vol. 162, no. 2, pp.935–942, 2006.

A. Lecroart, L.-P. Doyle, R. Michel, and J.-P. Odier, "Power and opticalcommunications for long tie-backs," Nucl. Instrum. Meth. A, vol. 602, no. 1,pp. 246 – 251, 2009.

J. Lygouras, A. Kapsopoulos, and P. Tsalides, "High speed rs-232 fibre opticcommunication system for underwater remotely operated vehicles," Microprocess.Microsy., vol. 19, no. 3, pp. 115 – 120, 1995.

M. C. Domingo and R. Prior, "Energy analysis of routing protocols for underwaterwireless sensor networks," Comput. Commun., vol. 31, no. 6, pp.1227 – 1238, 2008.

H. Shim, B. Jun, P. Lee, H. Baek, and J. Lee, "Workspace control systemof underwater tele-operated manipulators on an ROV," Ocean Eng., vol. 37,pp. 1036–1047, 2010.

National Instruments, "LabVIEW system design software,", National Instruments, 2013.

H.-P. Tan, R. Diamant, W. K. Seah, and M. Waldmeyer, "A survey of techniquesand challenges in underwater localization," Ocean Eng., vol. 38, no.14-15, pp. 1663 – 1676, 2011.

A. Alcocer, P. Oliveira, and A. Pascoal, "Study and implementation ofan EKF GIB-based underwater positioning system," Control Eng. Pract.,vol. 15, no. 6, pp. 689 – 701, 2007.

H.-H. Chen, "In-situ alignment calibration of attitude and ultra short baselinesensors for precision underwater positioning," Ocean Eng., vol. 35, no. 15, pp.1448 – 1462, 2008.

S. Ohata, K. Ishii, H. Sakai, T. Tanaka, and T. Ura, "An autonomous underwatervehicle for observation of underwater structure," Int. Congr. Ser., vol.1291, no. 0, pp. 277 – 280, 2006.

G. Roberts, "Trends in marine control systems," Annu. Rev. Control, vol. 32,no. 2, pp. 263 – 269, 2008.

M. Chyba, T. Haberkorn, R. Smith, and S. Choi, "Design and implementationof time efficient trajectories for autonomous underwater vehicles," OceanEng., vol. 35, no. 1, pp. 63 – 76, 2008.

T. I. Fossen, Guidance and Control of Ocean Vehicles. John Wiley andSons, 1994.

J.-H. Li, B.-H. Jun, P.-M. Lee, and S.-W. Hong, "A hierarchical real-timecontrol architecture for a semi-autonomous underwater vehicle," Ocean Eng.,vol. 32, no. 13, pp. 1631 – 1641, 2005.

S. Martin, L. Whitcomb, D. Yoerger, and H. Singh, "A mission controller forhigh level control of autonomous and semi-autonomous underwater vehicles,"in Proceedings of the IEEE OCEANS2006, 2006, pp. 1–6.

Z. H. Ismail and M. W. Dunnigan, "A region boundary-based control schemefor an autonomous underwater vehicle," Ocean Eng., vol. 38, no. 18, pp. 2270– 2280, 2011.

R. P. Kumar, A. Dasgupta, and C. Kumar, "Real-time optimal motion planningfor autonomous underwater vehicles," Ocean Eng., vol. 32, no. 11-12,pp. 1431 – 1447, 2005.

M. P. Aghababa, "3D path planning for underwater vehicles using five evolutionaryoptimization algorithms avoiding static and energetic obstacles,"Appl. Ocean Res., vol. 38, no. 0, pp. 48 – 62, 2012.

M. S. Grewal and A. P. Andrews, Kalman Filtering Theory and Practiceusing MATLAB, 2nd ed. Wiley, 2001.

M. Caccia and G. Veruggio, "Guidance and control of a reconfigurable unmannedunderwater vehicle," Control Eng. Pract., vol. 8, no. 1, pp. 21 – 37,2000.

M. Blain, S. Lemieux, and R. Houde, "Implementation of a ROV navigationsystem using acoustic/doppler sensors and kalman filtering," in Proceedingsof the IEEE OCEANS2003, vol. 3, 2003, pp. 1255–1260 Vol.3.

D. Loebis, R. Sutton, J. Chudley, and W. Naeem, "Adaptive tuning of a kalmanfilter via fuzzy logic for an intelligent AUV navigation system," ControlEng. Pract., vol. 12, no. 12, pp. 1531 – 1539, 2004.

J. C. Kinsey, R. M. Eustice, and L. L. Whitcomb, "A survey of underwatervehicle navigation: Recent advances and new challenges," in IFAC Conferenceof Manoeuvering and Control of Marine Craft, 2006.

P.-M. Lee and B.-H. Jun, "Pseudo long base line navigation algorithm forunderwater vehicles with inertial sensors and two acoustic range measurements,"Ocean Eng., vol. 34, no. 3-4, pp. 416 – 425, 2007.

F. Azis, M. M. Aras, M. Rashid, M. Othman, and S. Abdullah, "Problemidentification for underwater remotely operated vehicle (ROV): A casestudy," Procedia Eng., vol. 41, no. 0, pp. 554 – 560, 2012.

W. M. Bessa, M. S. Dutra, and E. Kreuzer, "Depth control of remotely operatedunderwater vehicles using an adaptive fuzzy sliding mode controller,"Robot. Auton. Syst., vol. 56, no. 8, pp. 670 – 677, 2008.

J. Javadi-Moghaddam and A. Bagheri, "An adaptive neuro-fuzzy sliding modebased genetic algorithm control system for under water remotely operatedvehicle," Expert Syst. Appl., vol. 37, no. 1, pp. 647 – 660, 2010.

B. Subudhi, K. Mukherjee, and S. Ghosh, "A static output feedback controldesign for path following of autonomous underwater vehicle in vertical plane,"Ocean Eng., vol. 63, no. 0, pp. 72 – 76, 2013.

J. P. J. Avila and J. C. Adamowski, "Experimental evaluation of the hydrodynamiccoefficients of a ROV through morison's equation," Ocean Eng.,vol. 38, no. 17-18, pp. 2162 – 2170, 2011.

A. Tiano, R. Sutton, A. Lozowicki, and W. Naeem, "Observer kalman filteridentification of an autonomous underwater vehicle," Control Eng. Pract.,vol. 15, no. 6, pp. 727 – 739, 2007.

H.-H. Chen, "Vision-based tracking with projective mapping for parameteridentification of remotely operated vehicles," Ocean Eng., vol. 35, no. 10, pp.983 – 994, 2008.

J. Stankovic and R. Rajkumar, "Real time operating systems," Real TimeSystems, vol. 28, no. 2–3, pp. 237–253, 2004.

F. de Assis, F. Takase, N. Maruyama, and P. Miyagi, "Developing an rovsoftware control architecture: A formal specification approach," in IECON2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012,pp. 3107–3112.