Fabrication and Characterization of Alq3 Thin Films
Main Article Content
Keywords
thin film, thermal evaporation, substrate, characterization, organic semiconductor
Abstract
Alq3 (tris (8-hydroxyquinolate) aluminum) thin films were deposited on glass by thermal evaporation in order to establish the optimal evaporation
rates of thin films deposited between 30 to 120nm on a substrate with temperatures between 60 and 120°C. The thin films were characterized by SEM microscopy and perfilometry to compare the obtained thickness in-situ by quartz crystals; furthermore photoluminescence measures were made.
PACS: 73.55.k2, 7855.-m, 06.60Sx, 07.30.Kf.
Downloads
References
by additional spray deposited hole transporting layer,” Journal of Science and Engineering, vol. 1, no. 1, pp. 79–83, 2013. [Online]. Available:
http://www.oricpub.com/journal-of-sci-and-eng
[2] G. F. Acevedo, “Producción y caracterización de capas delgadas de Alq3,” Universidad Nacional de Colombia, 2009.
[3] N. Salah, S. Habib, and Z. Khan, “Highly Luminescent Material Based on Alq3:Ag Nanoparticles,” Journal of Fluorescence, vol. 23, pp. 1031–1037,
2013.
[4] A. M. Ardila, H. Y. Valencia, and G. F. Acevedo, “Influencia de los parámetros de depósito en las propiedades ópticas de películas delgadas de Alq3,” Revista Colombiana de Física, vol. 41, no. 3, pp. 735–738, 2011. [Online]. Available: http://revcolfis.org/ojs/index.php/rcf/article/viewArticle/430337
[5] H. Y. Valencia, G. F. Acevedo, and A. M. Ardila, “Influencia de la tasa de depósito en las propiedades ópticas de películas delgadas de Alq3,” Revista
Colombiana de Física,, vol. 41, no. 2, pp. 1–4, 2009.
[6] I. Gutierrez, “Tratamiento y modificaciones superficiales del acero,” Universidad de Cadiz, p. 239, 2009. [Online]. Available:
http://hdl.handle.net/10498/8875
[7] S. Noh, C. K. Suman, Y. Hong, and C. Lee, “Carrier conduction mechanism for phosphorescent material doped organic semiconductor,”
Journal of Applied Physics, vol. 105, no. 3, 2009. [Online]. Available: http://dx.doi.org/+10.1063/1.3072693
[8] J. Park, G. H. Wang, B. Chin, N. Kang, and T. Lee, “Electrophosphorescent devices with solution processible emitter and hole transport layer stack,” Currient Applied Physics, vol. 12, no. 1, pp. e38–e41, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1567173911002410
[9] C. J. Huang, C. C. Kang, T. C. Lee, W. R. Chen, and T. H. Meen, “Improving the color purity and efficiency of blue organic light
emitting diodes (BOLED) by adding hole blocking layer,” Journal of Luminescence, vol. 129, no. 11, pp. 1292–1297, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S002223130900341X
[10] R. Podea, J. Ahna, W. Jeonb, T. Parkb, and J. Kwonb, “Eficient red light phosphorescence emission in simple bilayered structure organic devices with fluorescent host phosphorescent guest system,” Current Applied Physics, vol. 9, pp. 1151–1154, 2009.
[11] W. Jeona, T. Parka, S. Kima, R. Pode, J. Janga, and J. Kwona, “Ideal host guest system in phosphorescent OLEDs,” Organic
Electronics, vol. 10, no. 2, pp. 240–246, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1566119908002218
[12] I. Park, S. Park, D. Shin, J. Oh, W. Song, and J. Yoon, “Modeling and simulation of electronic and excitonic emission properties in organic host guest systems,” Organic Electronics, vol. 11, no. 2, pp. 218–226, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1566119909003115
[13] Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. W. Liu, and Z. H. Lu, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10000cd/m2,” Applied Physics Letters, vol. 98, 2011. [Online]. Available: http://dx.doi.org/10.1063/1.3532844