A simple proof of Abel’s theorem on the lemniscate

Main Article Content

Leonardo Solanilla
Óscar Palacio
Uriel Hernández

Keywords

Abel’s theorem on the lemniscate, Gauss lemniscatic functions, geometric constructions.

Abstract

Since Abel’s original paper of 1827, his remarkable theorem on the constructibilityof the lemniscate splitting has been proven with the aid of Elliptic Functions. Nowadays, Rosen’s proof of 1981 is considered definitive. He also makesuse of (modern and more elaborate) Class Field Theory. Here we present anovel, short and simple proof of Abel’s Theorem on the lemniscate and itsconverse. Our only ingredients are the addition formulas of Gauss lemniscaticfunctions and some basic facts of Galois Theory.

MSC: 11J89, 33E05

Downloads

Download data is not yet available.
Abstract 1002 | PDF Downloads 469

References

[1] C. F. Gauss. Disquisitiones Arithmeticæ, ISBN 958–92–05–15–1. Spanish translation by H. Barrantes, M. Josephy and A. Ruiz, Academia Colombiana de Ciencias Exactas, Físicas y Naturales, Bogot´a, 1995. Originally published by Gerh. Fleischer, Leipzig, 1801.

[2] N. H. Abel. Recherches sur les fonctions elliptiques, OEuvres Complétes, Christiania (Oslo), 1881. Originally published in Journal fur die reine und angewandteMathematik, herausgegeben von Crelle, Bd. 2, 3; Berlin, 1827, 1828.

[3] Michael Rosen. Abel’s Theorem on the Lemniscate. The American Mathematical Monthly, ISSN 0002–9890, 88(6), 387–395 (1981).

[4] U. Hernández and O. J. Palacio. División de la lemniscata: geometría, análisis, álgebra. Facultad de Ciencias, Universidad del Tolima, trabajo de grado del Programa de Matemáticas con énfasis en Estadística, Ibagué–Colombia, 2009.

[5] Thomas W. Hungerford. Abstract Algebra, an Introduction, ISBN 0–03–010559–5. Brooks/Cole, New York, 1996.

[6] Henry McKean and Victor Moll. Elliptic Curves: Function Theory, Geometry, Arithmetic, ISBN 978–0521658171. Cambridge University Press, Cambridge, 1999.

[7] R. Sridharan. From Lintearia to Lemniscate II: Gauss and Landen’s Work. Resonance, ISSN 0971–8044, 9(6), 11–20 (June 2004).