Modern Biotechnology for Agricultural Development in Colombia

Main Article Content

Diego F Villanueva-Mejía


Agricultural challenges, biotech crops, crop production, food security, genetically modified crops, sustainable development, transgenic plants


Colombia is currently one of the most promising countries with regard to its potential for agricultural development and for generating food supply for current and future human generations. This is owing to factors such as availability of land, water, topographical diversity, as well as political factors. Nevertheless, Colombia will reach this full potential if it adopts available technologies that can meet the current global challenges faced by the agriculture in the 21st century: among others, world population growth, increase in average life expectancy, high degree of malnutrition, climate change, wrong agricultural practices. Here is presented how modern biotechnology is an important ally as a wide range of technologies and innovative systems can be applied where they are most needed: for increasing cultivation productivity, resisting both biotic and abiotic factors, and ensuring food safety. In this study is showed evidence with regard to significant benefits of adopting biotechnological crops to contribute to food safety and how they are already being implemented in both developed and developing countries. Using modern technology, there are open opportunities for the country in search of circular bio-based economy, strengthen its food sovereignty and to serve as an agricultural breadbasket to Latin America and the World.


Download data is not yet available.
Abstract 2543 | PDF Downloads 1347


FAO, “La agricultura mundial en la perspectiva del año 2050,” Rome, Tech. Rep., 2009.

FAO, El estado mundial de la agricultura y la alimentación. Rome: Departamento de Comunicación FAO, 2016.

B. Baptiste, M. Pinedo-Vasquez, V. H. Gutierrez-Velez, G. I. Andrade, P. Vieira, L. M. Estupiñán-Suárez, M. C. Londoño, W. Laurance, and T. M. Lee, “Greening peace in Colombia,” Nature Ecology & Evolution, vol. 1, no. 4, p. 0102, 2017. [Online]. Available:

V. Fisas Armengol, Negociar la paz con las FARC: una experiencia innovadora, Icaria and M. Madera, Eds. Barcelona: Icaria, 2016. [Online]. Available:

DANE, “Censo nacional agropecuario Colombia,” DANE, Bogotá D.C., Tech. Rep., 2014.

J. Oeppen and J. W. Vaupel, “Demography: Broken limits to life expectancy,” Science, vol. 296, no. 5570, pp. 1029–1031, 5 2002. [Online]. Available:

National Institute on Aging, Global health and aging, Department of Health and Human Services, Ed., Washington, DC., 2011.

Z. Fonseca, A. Heredia, R. Ocampo, Y. Forero, O. Sarmiento, M. Álvarez, A. Estrada, B. Samper, J. Gempeler, and M. Rodríguez, Encuesta nacional de la situación nutricional en Colombia 2010 - ENSIN, Da Vinci, Ed. Bogotá D.C.: Da Vinci Editores & CIA, 2011.

E. F. Quiroga, “Mortalidad por desnutrición en menores de cinco años, Colombia, 2003-2007,” Biomédica, vol. 32, pp. 499–509, 2012. [Online]. Available:

P. Alexander, C. Brown, A. Arneth, J. Finnigan, and M. D. Rounsevell, “Human appropriation of land for food: The role of diet,” Global Environmental Change, vol. 41, pp. 88–98, 11 2016. [Online]. Available:

M. A. Rajib, L. Ahiablame, and M. Paul, “Modeling the effects of future land use change on water quality under multiple scenarios: A case study of low-input agriculture with hay/pasture production,” Sustainability of Water Quality and Ecology, vol. 8, pp. 50–66, 11 2016. [Online]. Available:

IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC, 2014. [Online]. Available:

P. W. Bierman-Lytle, “Climate Change Impact on High-Altitude Ecosystems and Their Impact on Human Communities,” in Climate Change Impacts on High-Altitude Ecosystems. Cham: Springer International Publishing, 2015, pp. 289–341. [Online]. Available: 978-3-319-12859-7_12

A. Gibbon, M. R. Silman, Y. Malhi, J. B. Fisher, P. Meir, M. Zimmermann, G. C. Dargie, W. R. Farfan, and K. C. Garcia, “Ecosystem carbon storage across the grassland–forest transition in the high andes of manu national park, Peru,” Ecosystems, vol. 13, no. 7, pp. 1097–1111, 11 2010. [Online]. Available:

W. Buytaert and B. De Bièvre, “Water for cities: The impact of climate change and demographic growth in the tropical Andes,” Water Resources Research, vol. 48, no. 8, pp. 1–13, 8 2012. [Online]. Available:

J. L. Rolando, C. Turin, D. A. Ramírez, V. Mares, J. Monerris, and R. Quiroz, “Key ecosystem services and ecological intensification of agriculture in the tropical high-Andean Puna as affected by land-use and climate changes,” Agriculture, Ecosystems & Environment, vol. 236, pp. 221–233, 1 2017. [Online]. Available: retrieve/pii/S016788091630593X

P. Zhang, J. Zhang, and M. Chen, “Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation,” Journal of Environmental Economics and Management, vol. 83, pp. 8–31, 2017.

P. Kurukulasuriya and S. Rosenthal, “Climate change and agriculture: a review of impacts and adaptations,” Washington DC, Tech. Rep., 2013. [Online]. Available:

M. Agovino, M. Casaccia, M. Ciommi, M. Ferrara, and K. Marchesano, “Agriculture, climate change and sustainability: The case of eu-28,” Ecological Indicators, 2018. [Online]. Available: http://www.sciencedirect. com/science/article/pii/S1470160X18303170

Ministerio de Medio Ambiente y Desarrollo Sostenible, “Política nacional para la gestión integral de la biodiversidad y sus servicios ecosistémicos,” 2012.

J. Bellarby, R. Tirado, A. Leip, F. Weiss, J. P. Lesschen, and P. Smith, “Livestock greenhouse gas emissions and mitigation potential in Europe,” Global Change Biology, vol. 19, no. 1, pp. 3–18, 1 2013. [Online]. Available: //

M. M. Rojas-Downing, A. P. Nejadhashemi, T. Harrigan, and S. A. Woznicki, “Climate change and livestock: Impacts, adaptation, and mitigation,” Climate Risk Management, vol. 16, pp. 145–163, 2017. [Online]. Available:

FAO, Biotechnologies for agricultural development. Rome: FAO, 2011. [Online]. Available:

FAO, “Feeding the world, eradicating hunger,” Rome, pp. 1–18, 2009.

OCDE, “Estudios económicos de la OCDE COLOMBIA,” 2015. [Online]. Available: pdf

MADR, “Plan Estratégico de Ciencia, Tecnología e Innovación del Sector Agropecuario Colombiano (2017-2027),” Ministerio de Agricultura y Desarrollo Rural, Bogotá D.C., Tech. Rep., 2017.

R. Ortiz, “La adopción de la biotecnología moderna y su compatibilidad con una agricultura sustentable,” Idesia, p. 8, 2012.

A. S. Verma, S. Agrahari, S. Rastogi, and A. Singh, “Biotechnology in the realm of history.” Journal of pharmacy & bioallied sciences, vol. 3, no. 3, pp. 321–3, 7 2011. [Online]. Available: //

United Nations, “Convention on biological diversity,” Tech. Rep., 1992.

A. Wieczorek and M. Wright, “History of agricultural biotechnology: how crop development has evolved,” Nature Education Knowledge, vol. 3, no. 3, pp. 1–9, 2012. [Online]. Available:

M. J. Kennedy, “The evolution of the word ‘biotechnology’,” Trends in Food Science & Technology, vol. 3, pp. 154–156, 1 1992. [Online]. Available:

J. Watson and F. Crick, “A structure for deoxyribose nucleic acid,” Nature, vol. 171, pp. 737–738, 1953.

D. P. Clark, N. J. Pazdernik, D. P. Clark, and N. J. Pazdernik, “Polymerase chain reaction,” in Molecular Biology, second ed. ed. Elsevier, 2013, pp. e55–e61. [Online]. Available: B9780123785947000305

N. S. Mosier and M. R. Ladisch, Modern biotechnology: connecting innovations in microbiology and biochemistry to engineering fundamentals. New Jersey: John Wiley & Sons, Inc., 2009. [Online]. Available:

C. McCullum, C. Benbrook, L. Knowles, S. Roberts, and T. Schryver, “Application of Modern Biotechnology to Food and Agriculture: Food Systems Perspective,” Journal of Nutrition Education and Behavior, vol. 35, no. 6, pp. 319–332, 2003.

Secretaria del Convenio sobre la Diversidad Biológica, Protocolo de Cartagena sobre seguridad de la biotecnología del convenio sobre la dIversidad biológica, Montreal, 2000. [Online]. Available: pdf

D. Francis, J. J. Finer, and E. Grotewold, “Challenges and opportunities for improving food quality and nutrition through plant biotechnology,” Current Opinion in Biotechnology, vol. 44, pp. 124–129, 4 2017. [Online]. Available:

K. Mallela, “Pharmaceutical biotechnology - concepts and applications,” Human Genomics, vol. 4, no. 3, p. 218, 2010. [Online]. Available: http: //

G. Niu and H. Tan, “Nucleoside antibiotics: biosynthesis, regulation, and biotechnology,” Trends in Microbiology, vol. 23, no. 2, pp. 110–119, 2 2015. [Online]. Available:

J. Denner, “Xenotransplantation — A special case of One Health,” One Health, vol. 3, pp. 17–22, 6 2017. [Online]. Available: http: //

H. Herweijer and J. A. Wolff, “Progress and prospects: naked DNA gene transfer and therapy,” Gene Therapy, vol. 10, no. 6, pp. 453–458, 3 2003. [Online]. Available: 3301983

S. Hussain, T. Siddique, M. Arshad, and M. Saleem, “Bioremediation and phytoremediation of pesticides: recent advances,” Critical Reviews in Environmental Science and Technology, vol. 39, no. 10, pp. 843–907, 10 2009. [Online]. Available: 10643380801910090

L. Bortesi and R. Fischer, “The CRISPR/Cas9 system for plant genome editing and beyond,” Biotechnology Advances, vol. 33, no. 1, pp. 41–52, 2015. [Online]. Available:

FAO, “Comité de Agricultura: Biotecnología,” Rome, Tech. Rep., 1999. [Online]. Available: x0074s.htm

J. Ruane and A. Sonnino, “Agricultural biotechnologies in developing countries and their possible contribution to food security,” Journal of Biotechnology, vol. 156, no. 4, pp. 356–363, 2011. [Online]. Available:

FAO, “Status and trends of biotechnologies applied to the conservation and utilization of genetic resources for food and agriculture and matters relevant for their future development,” Working Document CGRFA-13/11/3 for the 13th Regular Session of the FAO Commission on Genetic Resources for Food and Agriculture, no. July, 2011.

J. García-Cristobal, A. García-Villaraco, B. Ramos, J. Gutierrez-Mañero, and J. Lucas, “Priming of pathogenesis related-proteins and enzymes related to oxidative stress by plant growth promoting rhizobacteria on rice plants upon abiotic and biotic stress challenge,” Journal of Plant Physiology, vol. 188, pp. 72–79, 9 2015. [Online]. Available:

R. K. D. Peterson and L. G. Higley, Biotic stress and yield loss, R. Peterson and L. Higley, Eds. Boca Raton: CRC Press Inc, 2001.

R. Mittler, “Abiotic stress, the field environment and stress combination,” Trends in Plant Science, vol. 11, no. 1, pp. 15–19, 1 2006. [Online]. Available:

P. Cordy, M. M. Veiga, I. Salih, S. Al-Saadi, S. Console, O. Garcia, L. A. Mesa, P. C. Velásquez-López, and M. Roeser, “Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution,” Science of The Total Environment, vol. 410-411, pp. 154–160, 12 2011. [Online]. Available:

H. C. J. Godfray, J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, and C. Toulmin, “Food security: the challenge of feeding 9 billion people,” Science, vol. 327, no. February, pp. 812–818, 2010. [Online]. Available:

A. Datta, “Genetic engineering for improving quality and productivity of crops,” Datta Agriculture and Food Security, vol. 2, p. 15, 2013.

M. Abdelrahman, A. M. Al-Sadi, A. Pour-Aboughadareh, D. J. Burritt, and L.-S. Phan Tran, “Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses,” Plant Physiology and Biochemistry, vol. in press, 2018. [Online]. Available: 181 [54] FAO, “The state of food and agriculture 2007,” Rome, Tech. Rep., 2007.

CIMMYT, “CIMMYT germplasm bank,” 2017. [Online]. Available: 182 [56] CIAT, “CIAT germplasm bank database,” 2017. [Online]. Available:

National Academies of Sciences-Engineering-Medicine, Genetically engineered crops: experiences and prospects. Washington, DC: U.S.: National Academies Press, 2016, vol. xlv, no. 43.

ISAAA, Global Status of Commercialized Biotech/GM Crops: 2016, ISAAA, Ed., Ithaca, NY, 2016, vol. 52. [Online]. Available: isaaa-brief-52-2016.pdf

J. Shi, H. Gao, H. Wang, H. R. Lafitte, R. L. Archibald, M. Yang, S. M. Hakimi, H. Mo, and J. E. Habben, “ARGOS8 variants generated by CRISPRCas9 improve maize grain yield under field drought stress conditions,” Plant Biotechnology Journal, vol. 15, no. 2, pp. 207–216, 2017.

M. Li, X. Li, Z. Zhou, P. Wu, M. Fang, X. Pan, Q. Lin, W. Luo, G. Wu, and H. Li, “Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system,” Frontiers in Plant Science, vol. 7, no. March, pp. 1–13, 2016. [Online]. Available:

Y. Wang, X. Cheng, Q. Shan, Y. Zhang, J. Liu, C. Gao, and J.-L. Qiu, “Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew,” Nature Biotechnology, vol. 32, no. 9, pp. 947–951, 7 2014. [Online]. Available:

J. E. Carpenter, “Peer-reviewed surveys indicate positive impact of commercialized GM crops,” Nature Biotechnology, vol. 28, no. 4, pp. 319–321, 2010. [Online]. Available: 1038/nbt0410-319

W. Klümper and M. Qaim, “A meta-analysis of the impacts of genetically modified crops,” PLoS ONE, vol. 9, no. 11, 2014.

G. Brookes and P. Barfoot, “Global impact of biotech crops: environmental effects, 1996-2008,” AgBioForum, vol. 13, no. 1, pp. 76–94, 2010.

ICA, “Indice de Normatividad,” 2017. [Online]. Available: http://www.ica.

Agro-Bio, “Transgénicos en el mundo, Colombia y la Región Andina,” 2018. [Online]. Available: transgenicos-en-el-mundo-colombia-region-andina/

A. Chaparro-Giraldo, “Genetic Engineering of Plants in Colombia: A Road Under Construction,” Acta Biol. colomb, vol. 20, no. 2, pp. 13–22, 2015.