Acquisition and Evaluation of Rock Mass Geometric Data from Three-Dimensional Images for use in Geotechnical Analysis

Main Article Content

Jorge Luis Peñuela-Nieto
Gloria Inés Beltrán-Calvo
Rodrigo Hernández-Carrillo


Three-dimensional images analysis, rock mass, characterization of discontinuities, remote detection, geological mapping, Colombia


In this paper, the application of a remote acquisition tool for sampling and measurement of discontinuities properties of rock masses, based on the interpretation of three-dimensional images, is evaluated. The applied method integrates a wide experimental plan in both, field and computer laboratory, to collect structural data such as orientation, persistence and spacing of discontinuities in a rock mass taken as a case study. Simultaneously, an intensive work of data collection in the field was carried out by conventional methodologies using compass and tape, for comparative purposes and statistical validation. The results allow to establish the advantages of using unconventional techniques, in terms of quality and quantity of information, as well as efficiency in terms of time spent for filed data collection. Through the semi-automatic analysis of three-dimensional images, geological mapping and objective characterization of discontinuities for geotechnical purposes were achieved, constituting a powerful tool with great potential for use in road and mining projects in Colombia. 


Download data is not yet available.
Abstract 752 | PDF (Español) Downloads 566


[1] S. D. S. D. Priest, Discontinuity analysis for rock engineering. Chapman & Hall, 1993.

[2] G. Baecher and N. A. Lanney, “Trace length biases in joint surveys,” in In 19th US Symposium on Rock Mechanics (USRMS), 1978, pp. 56–65. [Online]. Available:

[3] S. Priest and J. Hudson, “Discontinuity spacings in rock,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 13, no. 5, pp. 135–148, may 1976. [Online]. Available:

[4] S. D. Priest and J. A. Hudson, “Estimation of discontinuity spacing and trace length using scanline surveys,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 18, no. 3, pp. 183–197, jun 1981. [Online]. Available:

[5] V. Ewan and G. West, “Reproducibility of joint orientation measurements in rock,” Transport and Road Research Laboratory (TRRL), 1981. [Online]. Available:

[6] A. Gaich, M. Poetsch, and W. Schubert, “Acquisition and assessment of geometric rock mass features by true 3D images,” in The 41st U.S. Symposium on Rock Mechanics. Golden, Colorado: American Rock Mechanics Association, jan 2006. [Online]. Available: https://www.onepetro. org/conference-paper/ARMA-06-1051

[7] J. B. Campbell and R. H. Wynne, Introduction to remote sensing. Guilford Press, 2011. [Online]. Available: Campbell-Wynne/9781609181765/reviews

[8] Á. N. Bhreasail, O. Pritchard, S. Carluccio, J. Manning, T. Daly, A. Merritt, and J. Codd, “Remote Sensing for Proactive Geotechnical Asset Management on England’s Strategic Road Network,” Infrastructure Asset Management, pp. 1–40, jun 2018. [Online]. Available: https: //

[9] F. Cigna, S. Bianchini, and N. Casagli, “How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach,” Landslides, vol. 10, no. 3, pp. 267–283, jun 2013. [Online]. Available:

[10] J. Martinez, F. Buill, and J. Bartoll, “Utilización de técnicas láser escáner y de fotogrametría terrestre para el estudio de desprendimientos de rocas: el caso de la zona de más riesgo del tren cremallera,” Mapping, vol. 103, pp. 26–33, 2005. [Online]. Available: codigo=1211877

[11] A. Bell, J. McKinley, D. Hughes, M. Hendry, and A. Macciotta, “Spatial and temporal analyses using Terrestrial LiDAR for monitoring of landslides to determine key slope instability thresholds: Examples from Northern Ireland and Canada,” in 6th Canadian GeoHazards Conference—GeoHazards 6, 2014, pp. 15–18.

[12] T. G. Carter, A. Begin, P. Dittrich, C. Evans, J. Byron, P. Rico, J. L. Carvalho, N. Solis, R. Gillinder, L. F. Brewster, R. Arthur, D. Williamson, and R. Murdoch, “Innovative use of GIS and drone photogrammetry for cliff stability modelling,” Proceedings of the Institution of Civil Engineers - Maritime Engineering, vol. 171, no. 3, pp. 89–97, sep 2018. [Online]. Available:

[13] F. Cigna, V. Banks, A. Donald, S. Donohue, C. Graham, D. Hughes, J. McKinley, K. Parker, F. Cigna, V. J. Banks, A. W. Donald, S. Donohue, C. Graham, D. Hughes, J. M. McKinley, and K. Parker, “Mapping Ground Instability in Areas of Geotechnical Infrastructure Using Satellite InSAR and Small UAV Surveying: A Case Study in Northern Ireland,” Geosciences, vol. 7, no. 3, p. 51, jul 2017. [Online]. Available:

[14] J. Park, M. Bates, Y. S. Jeong, K. M. Kim, and J. Kemeny, “Creating a Digital Outcrop Model by Using Hyper-Spectrometry and Terrestrial LiDAR,” in 50th U.S. Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, jun 2016, pp. 26–29. [Online]. Available:

[15] J. Chen, K. Li, K.-J. Chang, G. Sofia, and P. Tarolli, “Open-pit mining geomorphic feature characterisation,” International Journal of Applied Earth Observation and Geoinformation, vol. 42, pp. 76–86, oct 2015. [Online]. Available:

[16] R. Salvini, M. Francioni, S. Riccucci, F. Bonciani, and I. Callegari, “Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola–Iselle railway, the Italian Alps,” Geomorphology, vol. 185, pp. 110–122, mar 2013. [Online]. Available:

[17] A. Riquelme, M. Cano, R. Tomás, and A. Abellán, “Identification of rock slope discontinuity sets from laser scanner and photogrammetric point clouds: A comparative analysis,” in Symposium of the International Society for Rock Mechanics, EUROCK 2017., Ostrava-Poruba, Czech Republic, 2017, pp. 838–845. [Online]. Available:

[18] G. Firpo, R. Salvini, M. Francioni, and P. Ranjith, “Use of Digital Terrestrial Photogrammetry in rocky slope stability analysis by Distinct Elements Numerical Methods,” International Journal of Rock Mechanics and Mining Sciences, vol. 48, no. 7, pp. 1045–1054, oct 2011. [Online]. Available:

[19] H. Zhu, X. Li, and X. Zhuang, “Recent advances of digitization in rock mechanics and rock engineering,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 3, no. 3, pp. 220–233, sep 2011. [Online]. Available:

[20] V. Bonilla-Sierra, L. Scholtès, F. V. Donzé, and M. K. Elmouttie, “Rock slope stability analysis using photogrammetric data and DFN–DEM modelling,” Acta Geotechnica, vol. 10, no. 4, pp. 497–511, aug 2015. [Online]. Available:

[21] V. Bonilla-Sierra, M. Elmouttie, F.-V. Donzé, and L. Scholtès, “Composite wedge failure using photogrammetric measurements and DFN-DEM modelling,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 9, no. 1, pp. 41–53, feb 2017. [Online]. Available: JRMGE.2016.08.005

[22] D. Tannant, “Review of Photogrammetry-Based Techniques for Characterization and Hazard Assessment of Rock Faces,” International journal of geohazards and environment, vol. 1, no. 2, pp. 76–87, jul 2015. [Online]. Available:

[23] W. Gates and W. Haneberg, “Comparison of Standard Structural Mapping Results to 3-D Photogrammetric Model Results: Boundary Transformer Banks Rockfall Mitigation Project, Metaline Falls, Washington,” in 46th US Rock Mechanics Geomechanics Symposium. American Rock Mechanics Association, jan 2012, pp. 24–27. [Online]. Available: https: //

[24] H. D. Preuss, “Numerisch-photogrammetrische Kluftmessung.” Springer, Vienna, 1974, pp. 5–15. [Online]. Available: 978-3-7091-8372-4_3

[25] T. Hagan, “A case for terrestrial photogrammetry in deep-mine rock structure studies,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 17, no. 4, pp. 191–198, aug 1980. [Online]. Available:

[26] C. Tsoutrelis, G. Exadaktylos, and A. Kapenis, “Study of the rock mass discontinuity system using photoanalysis,” Mechanics of jointed and faulted rock, pp. 103–112, 1990.

[27] D. H. Kim, G. Poropat, I. Gratchev, and A. Balasubramaniam, “Assessment of the Accuracy of Close Distance Photogrammetric JRC Data,” Rock Mechanics and Rock Engineering, vol. 49, no. 11, pp. 4285–4301, nov 2016. [Online]. Available:

[28] S. J. Chen, W. C. Zhu, Q. L. Yu, and X. G. Liu, “Characterization of Anisotropy of Joint Surface Roughness and Aperture by Variogram Approach Based on Digital Image Processing Technique,” Rock Mechanics and Rock Engineering, vol. 49, no. 3, pp. 855–876, mar 2016. [Online]. Available:

[29] J. Zhao, L. Yin, and W. Guo, “Stress-Seepage Coupling of Cataclastic Rock Masses Based on Digital Image Technologies,” Rock Mechanics and Rock Engineering, vol. 51, no. 8, pp. 2355–2372, aug 2018. [Online]. Available:

[30] A. Gaich, A. Fasching, and W. Schubert, “Determining Structural Rock Mass Parameters Using a Computer Vision System,” Felsbau, vol. 21, no. 2, pp. 46–50, 2003.

[31] A. Riquelme, R. Tomás, M. Cano, J. L. Pastor, and A. Abellán, “Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds,” Rock Mechanics and Rock Engineering, vol. 51, no. 10, pp. 3005–3028, oct 2018. [Online]. Available: https: //

[32] I. F. Arango Vélez, M. en Ingeniería, and I. F. A. V. (, “Desprendimiento de rocas en laderas: una guía para la evaluación del riesgo en vías,” 2014. [Online]. Available:

[33] F. W. Vollmer, “Orient 3.7.1 Spherical Projection and Orientation Data Analysis Software User Manual.”

[34] G. GmbH, “ShapeMetrix3D Manual,” Graz, Austria, Tech. Rep., 2010.