Influence of the ENSO on the spatial and temporal variability ocurrence of landslides triggered by rain in the Andean region

Main Article Content

Karolina Naranjo Bedoya https://orcid.org/0000-0002-6484-0709
Edier Vicente Aristizábal Giraldo https://orcid.org/0000-0002-2648-2197
José Alfred Morales Rodelo https://orcid.org/0000-0003-3072-5486

Keywords

Landslides, rain, Andean region, ENSO, tropical environments

Abstract

Landslides triggered by rain have caused many human and economic losses in Colombia, especially in the department of Antioquia. According to DesInventar database since 1900 until 2017, 3478 landslides were recorded in the territory of Antioquia and these have left over 2065 fatalities and 74654 damaged homes. This paper presents spatial and temporal rainfall variability and their relationship with historical landslides events under the influence of ENSO in the nine sub-regions of Antioquia. For this purpose, daily rainfall data obtained from 27 IDEAM weather station and 5368 landslides reported in SIMMA and DesInventar database were used in a time window analysis between 1985 and 2016 (32 years). Also, temporal analyses and correlations were performed in daily, monthly and annual scale. According to the results of this study, the occurrence of landslides exhibits bimodal behavior according to temporal rainfall variability, and the strong effect of the cold phase of the ENSO (La Niña) has a strong influence on them. Moreover, landslides showed significant sensitivity to the time-series of rainfall linked to the different sub-regions of Antioquia. The understanding of spatial-temporal rainfall variability in tropical mountains environments is a key element for an appropriate risk management and early warning system implementation and design for hydrometeorological hazards.

Downloads

Download data is not yet available.
Abstract 1124 | PDF (Español) Downloads 836

References

[1] M. Dilley, R. S. Chen, U. Deichmann, A. L. Lerner-Lam, and M. Arnold, “Natural Disaster Hotspots A Global Risk Analysis,” The World Bank, Hazard Management Unit, vol. 98, no. 5, 2005. 195

[2] D. Petley, “Global patterns of loss of life from landslides.” Geol Soc Am, vol. 40, pp. 923–970, 2012. 195

[3] CRED, “? Natural disasters in 2017 : Lower mortality , higher cost ?” Tech. Rep. 50, 2018. 195

[4] S. Sepúlveda and D. Petley, “Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean.” Nat Hazards Earth Syst Sci, no. 15, pp. 1821–1833, 2015. 195

[5] D. J. Varnes, “Slope-stability problems of circum-Pacific region as related to mineral and energy resources,” in Energy Resources of the Pacific Region, 12th ed. AAPG Special Volumes, 1981, pp. 489–505. 195

[6] S. M. Moreiras, “Climatic effect of ENSO associated with landslide occurrence in the Central Andes, Mendoza Province, Argentina,” Landslides, vol. 2, no. 1, pp. 53–59, 2005. [Online]. Available: https://doi.org/10.1007/ s10346-005-0046-4 195, 199

[7] H. A. Moreno, M. V. Vélez, J. D. Montoya, and R. L. Rhenals Garrido, “La lluvia y los deslizamientos de tierra en Antioquia: análisis de su ocurrencia en las escalas interanual, intraanual y diaria,” Revista EIA, vol. 5, pp. 59–69, 2006. [Online]. Available: http://revista.eia.edu.co/articulos5/art45.pdf 195, 200, 216, 217

[8] E. Aristizábal and J. Gómez, “Inventario de emergencias y desastres en el Valle De Aburrá. Originados por fenómenos naturales y antrópicos en el periodo 1880-2007,” Gestión y Ambiente, vol. 10, no. 2, pp. 17–30, 2008. [Online]. Available: http://www.revistas.unal.edu.co/index. php/gestion/article/view/1409/2022 196

[9] A. M. Ramos-Cañón, L. F. Prada-Sarmiento, M. G. Trujillo-Vela, J. P. Macías, and A. C. Santos-R, “Linear discriminant analysis to describe the relationship between rainfall and landslides in Bogotá, Colombia,” Landslides, vol. 13, no. 4, pp. 671–681, 2016. [Online]. Available: https://doi.org/10.1007/s10346-015-0593-2 196

[10] R. Bell, J. Mayer, J. Pohl, S. Greiving, and T. Glade, Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS): Monitoring, Modellierung, Implementierung [Integrative Early Warning Systems for Gravitational Mass Movements (ILEWS): Monitoring, Modeling, Implementation]. Klartext-Verlag, 2010. 196

[11] F. Guzzetti, S. Peruccacci, M. Rossi, and C. P. Stark, “Rainfall thresholds for the initiation of landslides in central and southern Europe,” Meteorology and atmospheric physics, vol. 98, no. 3-4, pp. 239–267, 2007. [Online]. Available: https://doi.org/10.1007/s00703-007-0262-7 196

[12] J. Zêzere, T. Vaz, S. Pereira, S. C. Oliveira, R. Marques, and R. A. C. Garcia, “Rainfall thresholds for landslide activity in Portugal : a state of the art,” Environmental Earth Sciences, vol. 73, no. 6, pp. 2917–2936, 2015. [Online]. Available: https://doi.org/10.1007/s12665-014-3672-0 196

[13] M. Melillo, M. T. Brunetti, S. Peruccacci, S. L. Gariano, A. Roccati, and F. Guzzetti, “A tool for the automatic calculation of rainfall thresholds for landslide occurrence,” Environmental Modelling and Software, vol. 105, pp. 230–243, 2018. [Online]. Available: https://doi.org/10.1016/j.envsoft.2018. 03.024 196

[14] G. Poveda, D. M. Álvarez, and Ó. A. Rueda, “Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots,” Climate Dynamics, vol. 36, no. 11-12, pp. 2233–2249, 2010. [Online]. Available: https://doi.org/10.1007/s00382-010-0931-y 196, 199, 200, 218

[15] O. D. Álvarez Villa, J. I. Vélez, and G. Poveda, “Improved long-term mean annual rainfall fields for colombia,” International Journal of Climatology, vol. 31, no. 14, pp. 2194–2212, 2011. [Online]. Available: https://doi.org/10.1002/joc.2232 196, 199, 200

[16] É. Aristizábal and S. Yokota, “Geomorfología aplicada a la ocurrencia de deslizamientos en el Valle de Aburrá,” Dyna, vol. 73, no. 149, pp. 5–16, 2006. 197

[17] Universidad del Rosario, “Boletín No. 1 ¿Cómo vamos en las regiones?” 2015. [Online]. Available: http://www.urosario.edu.co/Home/ Principal/boletines/Ediciones-OPIP-Regionales/Edicion01-Regiones/ Como-vamos-en-las-regiones/ 197

[18] L. Gómez Giraldo, D. C. Sanchez Zapata, D. Correa Gutiérrez, and J. D. Goyes Garzón, “El municipio y las fronteras interdepartamentales de Antioquia en las propuestas territoriales actuales.” Historia y Sociedad, no. 27, pp. 241–268, 2014. [Online]. Available: https://doi.org/10.15446/hys. n27.44653 197

[19] IPC, “Regiones,” 2017. [Online]. Available: http://ipc.org.co/index.php/ regiones/ 197

[20] ALIANDES, “Diagnóstico socioeconómico de municipios productivos en el Magadelena Medio Colombiano,” 2001. [Online]. Available: http: //www.angelfire.com/ia2/ingenieriaagricola/madalenamedio.htm 197

[21] CCOA, “Oriente Comercal Digital,” 2018. [Online]. Available: https: //www.orientecomercialdigital.com/sitio/actividades.php 197

[22] E. M. González Agudelo, “La Universidad de Antioquia y su pertinencia en la región del Suroeste antioqueño,” pp. 1–16, 2011. [Online]. Available: http://www.udea.edu.co/wps/wcm/connect/udea/ 4a427876-83f0-4fb8-80f0-5b081d487fe6/2.+Pertinencia+de+la+UdeA+en+ Suroeste.pdf?MOD=AJPERES 197

[23] G. Girardo Buitrago, “Proyecto sistema nacional de capacitación municipal,” 2002. 198

[24] Gobernación de Antioquia, “Regiones de Antioquia,” 2018. [Online]. Available: http://antioquia.gov.co/index.php/antioquia/regiones 198

[25] Gobernación de Antioquia, “Contexto Socioeconómico y de competitividad de Antioquia,” 2007. 198

[26] INGEOMINAS, “Mapa geológico del Departamento de Antioquia,” Tech. Rep., 2001. 198

[27] F. Cediel and R. P. Shaw, Geology and tectonics of Northwestern South America, the Pacific, Caribbean, Andean conjuction, F. Cediel and R. P. Shaw, Eds. Springer, 2018. [Online]. Available: https: //doi.org/10.1007/978-3-319-76131-2 198

[28] G. Poveda, “Mixed memory, (non) Hurst effect, and maximum entropy of rainfall in the tropical Andes,” Advances in Water Resources, vol. 34, no. 2, pp. 243–256, 2011. [Online]. Available: https://doi.org/10.1016/j.advwatres. 2010.11.007 199

[29] G. Poveda, O. J. Mesa, P. A. Agudelo, J. F. Álvarez, P. A. Arias, H. A. Moreno, L. F. Salazar, and V. G. Toro, “Diagnóstico del ciclo diurno de precipitación en los Andes tropicales de Colombia,” 2002. 199, 200, 216, 218

[30] G. Poveda and O. Mesa, “On the existence of lloro (the rainiest locality on earth): Enhanced ocean-land-atmosphere interaction by a low level jet,” Geophysical Research Letters, vol. 27, pp. 1675–1678, 06 2000. [Online]. Available: https://doi.org/10.1029/1999GL006091 199, 200

[31] G. Poveda, “Escala de información, escala de fluctuación y entropía de las lluvias en el Valle de Aburrá, Colombia,” Revista de la Academia Colombiana de Ciencias exactas, físicas y naturales, vol. 33, no. 128, pp. 339–356, 2009. 199

[32] G. Poveda, “La Hidroclimatología De Colombia : Una Síntesis Desde La Escala Inter-Decadal Hasta La Escala Diurna,” Ciencias de la Tierra, pp. 201–222, 2004. 199, 200, 216, 217, 218, 219

[33] M. Bedoya, “Coherent annual and (shifting-phase) diurnal cycles of rainfall on a region of Colombia ’ s Central Andes,” International Journal of Climatology, 2008. 200, 216, 217

[34] E. Aristizábal, T. González, J. D. Montoya, J. I. Vélez, H. Martínez, and A. Guerra, “Análisis de umbrales empíricos de lluvia para el pronóstico de movimientos en masa en el Valle de Aburrá, Colombia,” Revista EIA, pp. 95–111, 2011. 200, 216, 217

[35] C. Polanco and G. B. Sanmiguel, “Compilación y análisis de los desastres naturales reportados en el departamento de Antioquia exceptuando los municipios del Valle de Aburrá,” Ingeniería y ciencia, vol. 1, no. 1, pp. 45–65, 2005. 200

[36] C. Velázquez and F. Ramírez, “Los desastres en Colombia. Una visión desde Desinventar, OSSO,” pp. 60–61, 2000. 200

[37] J. Mendoza Ramírez and E. Aristizábal, “Metodología para la zonificación de la susceptibilidad por movimientos en masa en proyectos lineales . Estudio de caso en el acueducto del municipio de Fredonia , Antioquia,” Ingenieria y Ciencia, vol. 13, no. 26, pp. 173–206, 2017. [Online]. Available: https://doi.org/10.17230/ingciencia.13.26.7 200

[38] S. Segoni, L. Piciullo, and S. L. Gariano, “A review of the recent literature on rainfall thresholds for landslide occurrence,” Landslides, no. October 2017, pp. 1–19, 2018. [Online]. Available: https://doi.org/10.1007/ s10346-018-0966-4 201

[39] NOAA, “MEI Index,” 2018. [Online]. Available: https://www.esrl.noaa.gov/ psd/enso/mei.old/table.html 202, 203

[40] NOAA, “Multivariate ENSO Index (MEI),” 2018. [Online]. Available: https://www.esrl.noaa.gov/psd/enso/mei/ 203

[41] Golden Gate Weather Services, “El Niño and La Niña Years and Intensities,” 2018. [Online]. Available: http://ggweather.com/enso/oni.htm 203

[42] The Florida State University, “ENSO Index According to JMA SSTA (1868-present),” 2016. [Online]. Available: http://coaps.fsu.edu/jma 203

[43] J. Null, “Años El Niño - La Niña,” 2004. [Online]. Available: http: //www-atmo.at.fcen.uba.ar/enso/consenso.htm 203

[44] E. Aristizábal, H. Martínez, and J. I. I. Vélez, “Una revisión sobre el estudio de movimientos en masa detonados por lluvias,” Revista de la Academia Colombiana de Ciencias, vol. 34, no. 53, pp. 209–227, 2010. 217

Most read articles by the same author(s)