Model Bone of Komarova Implementation for the sensitivity study of the process of remodelling bony before changes in local factors
Main Article Content
Keywords
remodeling, compact bone, bone metastasis, osteoclast, osteoblast, osteoprotegerin, PTH, TGF
Abstract
In this article the cellular level model of bone remodeling implementation raised by Komarova is carried out, using like tool a functional block diagram. The objective of this implementation is to make an analysis of sensitivity with respect to the variation of the model parameters and to determine the influence of the paracrine and autocrine factors in the osteoclasts and osteoblasts formation. The model was implemented in the commercial package Simulink with Matlab R2007b. We found that each parameter has a rank of determined operation and that outside him, the stability is lost and they establish gains or losses of bony mass that can be attributed to systemics abnormalitys of the bones. This work constitutes an improve about bony remodeling thanks to, unlike previous works, it includes variations of the own parameters of the remodeling process that takes to possible alterations of the bony metabolism processes, which constitutes a departure point for the study of diseases and alterations of the density of the bone, and allows to start the modeled of new diseases related to the bones, like, the bone metastasis. Then, this study is an improve with respect to the works previously presented and can explain phenomena of metastasis, and metabolic alterations like the described ones in Manolagas work.
PACS: 87.85.gj
Downloads
References
[2] Vincent Lemairea, Frank L. Tobina, Larry D. Grellera, Carolyn R. Choa and Larry J. Suva. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. Journal of Theoretical Biology, ISSN 0022–5193, 229(3), 293–309 (2004).
[3] Stavros C. Manolagas. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrine Reviews, ISSN 0163–769X, eISSN
[4] Marco G. Cecchinia, Antoinette Wetterwalda, Gabri van der Pluijmb and George N. Thalmanna. Molecular and Biological Mechanisms of Bone Metastasis. EAU– EBU, ISSN 1871–2592, 3(4), 214–226 (2005).
[5] Adam Moroz, Martin C. Crane, Geoff Smith and David I. Wimpenny. Phenomenological model of bone remodeling cycle containing osteocyte regulation loop. BioSystems, ISSN 0303–2647, 84(3), 183–190 (2006).
[6] David Ian Wimpenny and Adam Moroz. On allosteric control model of bone turnover cycle containing osteocyte regulation loop. BioSystems, ISSN 0303–2647, 90(2), 295–308 (2007).
[7] Ernesto Canalis and Donato Agnusdei. Insulin–like growth factors and their role in osteoporosis. Calcified Tissue International , pISSN 0171–967X, eISSN 1432– 0827, 58(3), 58–133–4 (1996).
[8] I. Fernández–Tresguerres,M. A. Alobera, M. C. Pingarrón and Luis Blanco. Physiological bases of bone regeneration I. Histology and physiology of bone tissue.Medicina oral patologia oral y cirugia bucal, ISSN 1698–4447, 11(1), 32–36 (2006).
[9] J. D. Termine. Bone Matrix Proteins and Mineralization Process. En Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, second edition, ISBN 0–7817–0083–3.Raven Press, Favus M. J., New York, 21–24 (1993).
[10] J. González Macías y S. Serrano Figueras. Enfermedades óseas. En Farreras P, ed. Medicina Interna, decimotercera edición, Madrid: Mosby–Doyma, 1064–1089 (1995).
[11] Jane B. Lian and Gary S. Stein. Concepts of osteoblast growth and differentia- tion: Basis for modulation of bone cell development and tissue formation. Critical Reviews in Oral Biology & Medicine, pISSN 1045–4411, eISSN 1544–1113, 3(3), 269–305 (1992).
[12] J. E. Puzas. The Osteoblast. En Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, second edition, ISBN 0–7817–0083–3. Raven Press, Favus M. J., New York, 15–20 (1993).
[13] T. A. Owen et al. Progressive development of the rat osteoblast phenotype in vitro: Reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix . Journal of Cellular Physiology, ISSN 0021–9541, 143(3), 420–430 (1990).
[14] J. E. Aubin, K. Turksen and J. N. M. Hersche. Osteoblastic cell Lineage. En Noda M, Cellular and Molecular Biology of Bone, ISBN 978–0–12–520225–1. Academic Press Inc, San Diego, 1–45 (1993).
[15] A. M. Parfitt. Osteonal and hemi–osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. Journal of cellular biochemistry, ISSN 0730–2312, 55(3), 273–286 (1994).
[16] J. F. Mikán y W. D. Oliveros. Osteoclastogénesis y Enfermedades óseas. Revista Med, ISSN 0121–5256, 15(2), 261–270 (2007).
[17] S. Serrano, J. Aubia y M. L. Mariñoso. Bases histológicas de la histomorfometría ósea. En Patología Osea Metabólica, ISBN 84–8536–002–8. Barcelona: Doyma, 55–70 (1990).
[18] D. J. Hadjidakis and I. I. Androulakis. Bone Remodeling. Annals New York Academy of Sciences, ISSN 0077–8923, 1092, 385–396 (2006).
[19] E. F. Eriksen, D. W. Axelrod and F. Melsen. Bone histology and bone histomorphometry. En Bone Histomorphometry, ISBN 10 0781701228. Raven Press, Nueva York, 33–48 (1994).
[20] A. M. Gurley and S. I. Roth. Bone. En Histology for Pathologists, ISBN 0– 88167–621–7, Raven Press, New York, 61–80 (1992). Referenciado en 114
[21] M. Petrt´yl, J. Hert and P. Fiala. Spatial organization of the haversian bone in man. Journal of Biomechanics, pISSN 0021–9290, eISSN 1873–2380, 29(2), 161–169 (1996).
[22] S. C. Manolagas and R. L. Jilka. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. The New England journal of medicine, pISSN 0028–4793, eISSN 1533–4406, 332(5), 305–311 (1995).
[23] G. Gutiérrez. Regulación paracrina del hueso. En Manual práctico de osteoporosis y enfermedades del metabolismo mineral , 13–18 (2004).
[24] Ja Elías, W. Tang and M. C. Howitz. Cytokine and Hormonal stimulation of human osteosarcoma cytokine–11 production. Endocrinology, pISSN 0013–7227, eISSN 1945–7170, 136, 489–498 (1995).
[25] P. Watson, D. Lazowski, V. Han, L. Fraher, B. Steer and A. Hodsman. Parathyroid hormone restores bone mass and enhances osteoblast insulin–like growth factor I gene expression in ovariectomized rats. Bone, ISSN 8756–3282, 16(3), 357–365 (1995).
[26] J. Pfeilschifter et al. Parathyroid hormone increases the concentration of insuline–like growth factor I and transforming growth factor beta 1 in rat bone. The Journal of Clinical Investigation, eISSN 0021–9738,, eISSN 1558–8238, 96, 767–774 (1995).
[27] H. M. Frost. The mechanostat: a proposed pathogenic mechanism of osteoporosis and the bone mass effects of mechanical and nonmechanical agents. Bone and Mineral, ISSN 0169–6009, 2, 73–85 (1987). Referenciado en 116 [28] H. Weinans, R. Huiskes and H. J. Grootenboer. The behavior of adaptive bone–remodeling simulation models. Biomechanics, ISSN 0021–9290, 25(12), 1425–1441 (1992).
[29] M. H. Kroll. Parathyroid hormone temporal effects on bone formation and resorption. Bulletin of Mathematical Biology, pISSN 0092–8240, eISSN 1522–9602, 62(1), 163–188 (2000).
[30] S. V. Komarova. Mathematical Model of Paracrine Interactions between Osteoclasts and Osteoblasts Predicts Anabolic Action of Parathyroid Hormone on Bone. Endocrinology, pISSN 0013–7227, eISSN 1945–7170, 146(8), 3589–3595 (2005).
[31] G. R. Mundy. Bone Resorbing Cells. En Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, second edition, ISBN 0–7817–0083–3. Raven Press, Favus M. J., New York, 25–32 (1993).
[32] Yi Jun Yang. Histology of Bone: Multimedia, Media file 13. http://emedicine.medscape.com/article/1254517–media.