Estudio catalítico comparativo de los sistemas TiO2 y Nb2O5 en la degradación de cianuro en función del tipo de oxidante

Main Article Content

Aida Liliana Barbosa López https://orcid.org/0000-0002-9290-1564
Isel María Castro Sierra

Keywords

fotocatálisis, ozono, oxido de niobio, oxido de titanio, peróxido de hidrógeno.

Resumen

La viabilidad del uso de otros agentes fotocatalizadores como el niobio, radicaen disminuir las energías altas de la banda prohibida para hacerlo competitivo frente al TiO2, sin embargo la presencia de coayudantes de oxidación, talescomo H2O2 y O3 podrían presentar resultados sorprendentes en el desempeño catalítico, debido a una mayor generación del radicales OH. La obtención de óxidos de mayor área y propiedades texturales diferentes al oxido de niobio comercial, mejoran su actividad catalítica en la remoción de cianuro libre. El trabajo presenta resultados experimentales de fotodegradación de cianuro 100mg=l sobre TiO2 Degussa P- 25 y Nb2O5 · 3H2O, usando un fotorreactor CPC con una capacidad de 4L de solución, usando como fuente de radiación la luz solar, tomando una inclinación igual a la latitud de Cartagena 10.45°, los resultados indicaron un claro efecto del pH, el tipo de catalizador y el coayudante de oxidación. La reducción de ion cianuro del efluente contaminado aumento por la adición del agente oxidante (O3 y H2O2). Sugiriendo una mayor susceptibilidad del cianuro libre, para oxidarse a cianato de forma indirecta, por una mayor generación de radicales hidroxilos, inducidos por la presencia de H2O2 o del O3 bajo radiación solar. Se obtuvo porcentajes de oxidación fotocatalítica de cianuro libre, entre el 64% y 72% usando Nb2O5 · 3H2O y un rango entre 67% y 71% usando TiO2 Degussa P - 25. Los catalizadores fueron caracterizados estructuralmente usando DRX, BET,Raman e FT-IR, con la finalidad de correlacionar los cambios morfológicos con el desempeño catalítico.

PACS: 82.65+r

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 1489 | PDF Downloads 405 HTML Downloads 3438

Referencias

[1] G. Saupe, Y. Zhao, J. Bang, N. Yesu, G. Carballo, R. Ordonez, T. Bubphamala.“Evaluation of a new porous titanium-niobium mixed oxide for photocatalyticwater decontamination”. Microchemical Journal, no. 81, pp. 156-162, 2005.Referenciado en 259

[2] T. Agustina, H. Ang, V. Vareek. “A review of synergistic effect of photocatalysisand ozonation on wastewater treatment”. Journal of Photochemistry and PhotobiologyC: Photochemistry Reviews, no 6 , pp. 264-273, 2005.Referenciado en 259

[3] F. Barriga Ordonez, F. Nava Alonso, A. Uribe Salas. “Cyanide oxidation byozone in a steady state ow bubble column”. Minerals Engineering, no19, pp.117-122, 2006. Referenciado en 259, 273

[4] J. Parga, S. Shukla, F. Carrillo Pedroza. “Destruction of cyanide waste solutionsusing chlorine dioxide, ozone and titania sol”. Waste Management, no 23, pp.183-191, 2003. Referenciado en 259, 260

[5] R. Kumar, P. Bose. “Modeling free and copper-complexed cyanide degradationin a continuous ow completely mixed ozone contactor”. Ind. Eng. Chem. Res. ,no 44, pp. 776-788, 2005. Referenciado en 259, 260

[6] M. Hernández Alonso, J. Coronado, A. Mair, J. Soria, V. Loddo, V. Augugliaro.“Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalyticoxidation of free cyanide ions”. Applied Catalysis B: Environmental, no39 pp. 257-267, 2002. Referenciado en 259

[7] U. Kepa, E. Stanczyk Mazanek, L. Stepniak. “The use of the advanced oxidationprocess in the ozone + hydrogen peroxide system for the removal of cyanide fromwater”. Desalination, vol. 223, pp. 187-193, 2008. Referenciado en 259, 273, 274

[8] A. Bozzi, I. Guasaquillo, J. Kiwi. “Accelerated removal of cyanides from industrialeffluents by supported T iO2 photo-catalysts”. Applied Catalysis B: Environmental,vol. 51, pp. 203-211, 2004. Referenciado en 259, 260

[9] A. Durán, J. Monteagudo, I. San Martín, M. Aguirre. “Decontamination of industrialcyanide containing water in a solar CPC pilot plant A”. Solar Energy,vol. 84, pp. 1193-1200, 2010. Referenciado en 259

[10] E. Yazici, H. Deveci, I. Alp, T. Uslu. “Generation of hydrogen peroxide andremoval of cyanide from solutions using ultrasonic waves”. Desalination, vol.216, pp. 209-221, 2007. Referenciado en 259

[11] M. Kitis, E. Karakaya, N. Yigit, G. Civelekoglu, A. Akcil. “Heterogeneous catalyticdegradation of cyanide using copper-impregnated pumice and hydrogenperoxide”. Water Research, vol. 39, pp. 1652-1662, 2005. Referenciado en 259

[12] A. Yeddou, S. Chergui, A. Chergui, F. Halet, A. Hamza, B. Nadjemi, A. Ould-Dris, J. Belkouch. “Removal of cyanide in aqueous solution by oxidation withhydrogen peroxide in presence of copper impregnated activated carbon”. MineralsEngineering, vol. 24, pp. 788-793, 2011. Referenciado en 259

[13] E. Yazici, H. Deveci, I. Alp. “Treatment of cyanide effluents by oxidation andadsorption in batch and column studies”.Journal of Hazardous Materials, vol.166, pp. 1362-1366, 2009. Referenciado en 259

[14] J. Blanco, S. Malato, C. Estrada, E. Bandala, S. Gelover, T. Leal. “Purificaciónde aguas por Fotocatálisis heterogénea: Estado del Arte”. En Eliminación decontaminantes por Fotocatálisis Heterogénea. Editorial CNEA, Buenos Aires,pp. 57-62, 1998. Referenciado en 259

[15] R. Rice “Applications of ozone for industrial wastewater treatment-a review”,Ozone Sci. Eng. , vol. 18, pp. 477-515, 1997. Referenciado en 259

[16] Y. Hsu, Y. Chen, J. Chen. “Decolorization of dye RB-19 solution in a continuousozone process”. J. Environ. Sci. Heal. A. , vol. 39, pp. 127-144. 2004. Referenciadoen 259

[17] R. Mudliar, S. Umare, D. Ramtekea, S. Watea. “Energy efficient-Advanced oxidationprocess for treatment of cyanide containing automobile industry wastewater”.Journal of Hazardous Materials. 164, pp. 1474-1479, 2009.Referenciado en 259

[18] M. Sarla, M. Pandita, D. Tyagi, J. Kapoora. “Oxidation of cyanide in aqueoussolution by chemical and photochemical process”, Journal of Hazardous MaterialsB, vol. 116, pp. 49-56, 2004. Referenciado en 259, 272

[19] A. Mills, S. Le Hunte. “An overview of semiconductor photocatalysis”, Journalof Photochemistry and Photobiology A: Chemistry. , vol. 108, pp. 1-35, 1997.Referenciado en 260

[20] M. Stoyanova, St. Christoskova, M. Georgieva. “Aqueous phase catalytic oxidationof cyanides over iron-modified cobalt oxide system”. Applied Catalysis A:General. , vol. 274, pp. 133-138, 2004. Referenciado en 260

[21] St. Christoskova, M. Stoyanova. “Catalytic oxidation of cyanides in an aqueousphase over individual and manganese-modified cobalt oxide systems”. Journalof Hazardous Materials. 165, pp. 690-695, 2009. Referenciado en 260

[22] J. Aguado, R. van Grieken, M. López Muñoz, J. Marugán. “Removal of cyanidesin wastewater by supported T iO2-based photocatalysts”, Catalysis Today, vol.75, pp. 95-102, 2002. Referenciado en 260, 265

[23] K. Osathaphan, B. Chucherdwatanasak, P. Rachdawong, V. Sharma. “Photocatalyticoxidation of cyanide in aqueous titanium dioxide suspensions: Effect ofethylenediaminetetraacetate”. Solar Energy, vol. 82, pp. 1031-1036, 2008.Referenciado en 260

[24] K. Jae-Hyun, L. Ho-In. “Effect of Surface Hydroxyl Groups of Pure T iO2 andModified T iO2 on the Photocatalytic Oxidation of Aqueous Cyanide”. KoreanJ. Chem. Eng. , vol. 21, pp. 116-122, 2004. Referenciado en 260, 264

[25] A. Barbosa, S. Gutierrez, I. Castro. “Comparison of analytical methods for themeasurement as cyanate degradation product cyanide doped T iO2 heteropolymolybdatesof copper in sewage”. Memorias del 43rd IUPAC World ChemistryCongress, 2011. Referenciado en 260

[26] A. Barbosa, N. Cardona, D. Reyes, I. Castro. “Efecto del carácter ácido de sólidosde niobio en la remoción fotocatalitica de cianuros”. Memorias del VII SimposioColombiano de Catálisis SICCAT-2011, 2011. Referenciado en 260

[27] I. Nowak, M. Ziolek. “Niobium Compounds, pp. Preparation, Characterization,and Application in Heterogeneous Catalysis”. Chem. Rev. , vol. 99, pp. 3603-3624, 1999. Referenciado en 260

[28] APHA, AWWA, WPCF. “Métodos normalizados para el análisis de aguas potablesy residuales”. Editor, Díaz de Santos, S. A. Madrid, p. 1268. 1992.Referenciado en 261

[29] M. Muthukumar, D. Mohan, M. Rajendran. “Optimization of mix proportionsof mineral aggregates using Box Behnken design of experiments”. Cement &Concrete Composites, vol. 25, pp. 751-758, 2003. Referenciado en 262, 267, 268

[30] E. Gil. “Oxidación fotocatalíica de aguas residuales de la industria de lavanderíautilizando T iO2 como catalizador y luz UV”. Ingeniería y Ciencia, vol. 1, no.1, pp. 25-40, 2005. Referenciado en 262

[31] R. Amal, T. Tran. “Photocatalytic degradation of cyanide using titanium dioxidemodified with copper oxide”. Advances in Environmental Research. , vol. 6, pp.471-485, 2002. Referenciado en 264

[32] B. Li, Y. Hakuta, H. Hayashi. “The synthesis of titanoniobate compound characteristicof various particle morphologies through a novel solvothermal route”.Materials Letters, vol. 61, pp. 3791-3794, 2007. Referenciado en 265

[33] I. E. Wachs,J. -M. Jehng, G. Deo, H. Hu, N. “Arora Redox properties of niobiumoxide catalysts”. Catalysis Today, vol. 28, pp. 199-205, 1996. Referenciado en 272

[34] C. Alfonso, G. Aleixo, A. Ramirez, R. Caram. “Influence of cooling rate onmicrostructure of Ti-Nb alloy for orthopedic implants”. Materials Science andEngineering C. , vol. 27, pp. 908-913, 2007. Referenciado en 265

[35] Q. Sun, Y. Fu, H. Yang, A. Auroux, J. Shen. “Dehydration of methanol todimethyl ether over N b2O5 and N bOP O4 catalysts, pp. Microcalorimetricand FT-IR studies”. Journal of Molecular Catalysis A. , vol. 275, pp. 183-193,2007. Referenciado en 265

[36] L. Zhou, S. Yan, B. Tian, J. Zhang, M. Anpo. “Preparation of T iO2 SiO2 lmwith high photocatalytic activity on PET substrate”. Materials Letters, vol. 60,pp. 396-399, 2006. Referenciado en 266

[37] I. Barros, V. Braga, D. Pinto, J. Macedo, G. Filho, J. Dias, S. Dias. “Effectsof niobium addition on ZSM-5 studied by termal and spectroscopy methods”.Microporous and Mesoporous Materials, vol. 109, pp. 485-493, 2008.Referenciado en 266

[38] R. Poliah , S. Sreekantan. “Characterization and Photocatalytic Activity ofEnhanced Copper-Silica-Loaded Titania Prepared via Hydrothermal Method”.Journal of Nanomaterials, 2011. Referenciado en 266

[39] A. Schulte, Y. Guo, W. Schirmacher, T. Unruh, T. Cardinal. “Low-FrequencyVibrational Excitations in a Niobium-Phosphate Glass for Raman Gain Applications”.Vibrational Spectroscopy. 12-15, 2007. Referenciado en 266, 267

[40] Hiroshi Kominami, Kazuhide Oki, Masaaki Kohno, Sei-ichi Onoue, Yoshiya Kera,Bunsho Ohtani. “Novel solvothermal synthesis of niobium(V) oxide powdersand their photocatalytic activity in aqueous suspensions”. Journal of MaterialsChemistry. , vol. 11, pp. 604-609, 2001. Referenciado en 266

[41] J. Medina, J. Garcia, C. Frausto, S. Calixto. “Encapsulamiento de Anatasa Comercialen películas Delgadas de T iO2 depositadas sobre microrodillas de vidriopara la fotodegradación de fenol”. Revista Mexicana de Ingeniería Química, vol.4, pp. 191-201, 2005. Referenciado en 267

[42] B. Xim, Z. Ren, P. Wang, J. Liu, L. Jing, H. Fu. “Study on the mechanisms ofphotoinduced carriers separation and recombination for Fe 3+T iO2 photocatalysts”.Applied Surface Science, vol. 253, pp. 4390-4395, 2007.Referenciado en 267

[43] T. Maiyalagan, B. Viswanathan. “Fabrication and characterization of uniformTiO2 nanotube arrays by sol-gel template method”. Bull. Mater. Sci. , vol. 29,no 7, pp. 705-708, 2006. Referenciado en 267

[44] T. Ramalho, L. Oliveira, K. Carvalho, E. Souza, E. da Cunha, M. Nazzaro. “Themolecular basis for the behaviour of niobia species in oxidation reaction probedby theoretical calculations and experimental techniques”, Mol. Phys. , vol. 107,pp. 171-179, 2009. Referenciado en 272

[45] A. Silva, R. Cepera, M. Pereira, D. Lima, J. Fabrisc, L. Oliveira. “Heterogeneouscatalyst based on peroxo-niobium complexes immobilized over iron oxide fororganic oxidation in water”. Appl. Catal. B: Environmental. , vol. 107, pp. 237-244, 2011. Referenciado en 272

[46] S. Frank , A. Bard. “Heterogeneous Photocatalytic Oxidation of Cyanide andSul te in aqueous solutions at semiconductor powders”. The Journal PhysicalChemistry, vol 81, pp. 1484-1848, 1997. Referenciado en 273

[47] K. Chiang, R. Amal, T. Tran. “Photocatalytic degradation of cyanide using titaniumdioxide modified with copper oxide”. Advances in Environmental Research,vol. 6, pp. 471-485, 2002. Referenciado en 273

[48] T. Mudder. “Making sense of cyanides, in The cyanide compendium”. EditorialMining Journal Books Limited, London, p. 1-11, 1999. Referenciado en 274

[49] R. Rajeswari, S. Kanmani. “A study on synergistic effect of photocatalytic ozonationfor carbaryl degradation”. Desalination,vol. 242, pp. 277-285, 2009.Referenciado en 274

[50] S. T. Oyama. “ChemInform Abstract, pp. Chemical and Catalytic Propertiesof Ozone”. 1758-2946. ChemInform., vol. 32, no doi: 10. 1002/chin. 200103238,2001. Referenciado en 274

[51] M. Hernández Alonso, J. Coronado , J. Maira , J. Soria, V. Loddo, V. Augugliaro.“Ozone enhanced activity of aqueous titanium dioxide suspensions forphotocatalytic oxidation of free cyanide ions”. Appl. Catal. B: Environmental,vol. 39, pp. 257-267, 2002. Referenciado en 274