Estudio de las transformaciones térmicas en la elaboración de un vidrio sódico-cálcico para envases con zeolita natural cubana

Main Article Content

Rafael Jordán H.
Tania Faria P.
Gerardo Rodríguez F.
Gerardo César Díaz T.
María Elena Zayas

Keywords

zeolita, vidrio para envases, termograma

Resumen

Las zeolitas son aluminosilicatos de estructura de armazón y constituyen rocas frescas provenientes de las transformaciones de los vidrios volcánicos. En Cuba
existen diferentes manifestaciones zeolíticas de importancia, entre ellas, la del yacimiento “Tasajeras”, en las provincias centrales del país. La falta de feldes-patos de adecuada calidad para la industria del vidrio ha servido de estímulo a la realización de este trabajo. El curso de las reacciones de formación de silicatos se siguen mediante estudios térmicos comparativos entre un vidrio tradicional con feldespato y otro con zeolita, discutiéndose posteriormente sus particularidades. Las especificidades del comportamiento físico–químico de las mezclas vitrificables permiten inferir mejoras en los procesos de elaboración del vidrio y ahorros energéticos sensibles durante el proceso industrial.

PACS: 81.05.Kf

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 707 | PDF Downloads 1276

Referencias

[1] R. Jordán–Hernández, G. C. Díaz and M. E. Zayas S. Modified zeolite increases chemical resistance of bottle glass. American Ceramic Society Bulletin, ISSN 0002-7812, 82(6), 43–44 (June 2003).

[2] Alexis B. Pincus and David H. Davies . Batching in the Glass Industry, ISBN–13 978-0911993073. Ashlee Pub Co, N. Y, 39, 52, 71, 96 (1981).

[3] Rafael Jordán Hernández, Gerardo César Díaz, Nelson Álvarez Alvelaiz and Alicia Durán Carrera. Decolorizing Soda–Lime Glass. American Ceramic Society Bulletin, ISSN 0002-7812, 83(6), June 2004.

[4] A. R. Ruiz Salvador, D. W. Lewis, A. Gómez, G. Rodríguez Fuentes, L. Montero and C. R. Catlow. J. Phys. Chem. (1998).

[5] I. Petrovic, A. Navrotsky, M. E. Davies and S. I. Zones. Thermochemical Study of the Stability of Frameworks in High Silica Zeolites. Chemistry of Materials, 5(12), 1805–1813 (1993).

[6] J. M. Fernández Navarro. El Vidrio. Consejo Superior de Investigaciones Científicas, Madrid, 64–73, 141, 334 (1991).

[7] G. Rodríguez–Fuentes y J. A. González Morales. Memorias de la 3ra Conferencia Internacional sobre ocurrencia, propiedades y usos de las zeolitas naturales, La Habana, 130–133 (abril 9–12, 1991).

[8] J. Hlavac, K. Pesek, H. Goerk, J. Stoklaska,M. B. Volf and F. Nemec. Tavení skla, SNTL–Naklatelsvi Technicke Literatury, Praga, 15,16,17 (1970).

[9] J. Sakowski and G. Herms. Conversion of structural units in oxide glass melts, Physics and Chemistry of Glasses 2002, 43C. The XIX International Congress on Glass, ISSN 0031-9090, Edinburgh, Scotland, 13–18, (1–6 july, 2001).

[10] R. C. Mackenzie. Differential Thermal Analysis, Academic Press, London–New York, 272–279, 279–286, 308–309, 356–357, 419, 470, 486–487 (1970).

[11] K. S. Birrell and M. Fieldes. Allophane in Volcanic–Ash Soils, J. Soils Sci. 3, 156–166 (1952).

[12] I. Joseph and L. D. Pye. M¨ossbauer spectroscopy in. Glass in Experimental Techniques of Glass Science, edited by Catherine J. Simmons and Osaina H. El–Bayoumi. Journal of the American Ceramic Society, ISSN 0002-7820,Westerville, Ohio 101–125 (1993).

[13] Martin Charles Wilding and Alexandra Navrotsky. The dissolution of Silica and Alumina in Silicate Melts: in situ High Temperature Calorimetric Studies. Rosenhauer Memorial Volume, Neus Jahrbuch fur Mineralogie, 172, 177–201 (1998).

[14] C. A. Angell. Current Opinion on the Glass Transition. Current Opinion in Solid State and Materials Science, 1(4), 578–585 (1996).

[15] J. Ying, J. B. Benziger and Alexandra Navrotsky. The structural evolution of Colloidal Silica Gels to Glass. Journal of the American Ceramic Society, 76, 2561– 2570 (1993).

[16] G. Gibson and R. Ward. Reactions in Solid State: III, Reaction between sodium carbonate and quartz. Journal of the American Ceramic Society, 26(7), 239–246 (1943).

[17] P. G. Nutting. Some Standard Thermal Dehydratation Curves of Minerals. U. S. Geol. Surv., Profess. Paper 197E, 197–216 (1943).

[18] C. A. Angell and P. F. McMillan. Polymorphism in Liquids and Glasses. P. H. Poole, Tor Grande, Science, 275, 322–323 (1997).

[19] C. N. Fenner. Die Stabilitatsbeziehungen der Kieselsauremineralien. Z. Anorg. allg. Chem 85, 193–197, (1914).

[20] Colectivo de autores, Prirucka pro sklo uzitkovou keramika a smalt, editado por F. Laibla. Praga, 114–117 (1963).

[21] Alexandra Navrotsky, Robert L. Putnam, CamillaWinbo and Erik Rosén. Thermochemistry of Double Carbonates in the K2CO3 − CaCO3 System. American Mineralogist, ISSN 0003-004X, 82(5–6), 546–548 (1997).

[22] R. M. Gruver. J. Am. Ceram. Soc. 33, 96–101 (1950).

[23] W. C. La Course. Structure and properties of glass affected by forming processes. The Glass Researcher, 10–11[2–1] 18–20 (2001).

[24] Ralf Br¨uning and M. Sutton. Fragility of Glass Forming Systems and the Width of the Glass Transition. J. Non-Crystalline Solids, 205–207, 480–484 (1996).

[25] A. C. Angell. The Glass Transition. Pergamon Encyclopedia of Materials: Science and Technology, 3365 4 (2001).

[26] T. L. Webb and H. Heystek. The differential Thermal Investigation of Clays. (R. C Mckenzie ed). Mineralogical Society, London, 329–363 (1957).

[27] Mc Weeny R. Valence Bond Theory: Progress and Prospect en Int. J. Quant. Chem., 24, 733–752 (1990).

[28] L. G. Berg and K. A. Buzdov. Zh. Neorg. Khim. 7, 1773–1778 (1962).

[29] D. Ehrt, M. Leister and A. Matthai. Polyvalent elements iron, tin and titanium in silicate, phosphate and fluoride glasses and melts. Physics and Chemistry of Glasses (Society of Glass Technology), ISSN 0031-9090, 42(3), 231–239 (2001).