Generación de trayectorias para un robot bípedo en fase de balanceo a partir de captura de movimiento Humano

Main Article Content

Diego A Bravo https://orcid.org/0000-0001-7041-3183
Carlos F Rengifo R

Keywords

robot bípedo, captura de movimiento, generación de trayectorias, modelo dinámico

Resumen

En este trabajo se propone la captura de movimiento humano para generar movimientos de la pierna derecha en fase de oscilación de un robot bípedo restringido al plano sagital. Estos movimientos son definidos mediante funciones de tiempo que representan las posiciones angulares deseadas para las articulaciones involucradas. La captura de movimiento realiza con un sensor Kinect TM y a partir de los datos obtenidos se generaron trayectorias articulares para controlar la pierna derecha del robot en la fase de balanceo. La ley de control propuesta es una estrategia híbrida; la primera estrategia se basa en un control por par calculado para realizar un seguimiento de trayectorias de referencia, y la segunda estrategia se basa en un control por escalado de tiempo para garantizar el equilibrio del robot. Este trabajo es un estudio preliminar para generar trayectorias de robots humanoides a partir de captura de movimiento.

PACS: 87.85.St

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 4828 | PDF (English) Downloads 1806 HTML (English) Downloads 915

Referencias

[1] C. Chevallerau, G. Bessonnet, G. Abba, and Y. Aoustin, Bipedal Robots. Modeling, design and building walking robots, 1st ed. Wiley, 2009.

[2] B. Rosenhahn, R. Klette, and D. Metaxas, Human Motion: Understanding, Modelling, Capture, and Animation. Springer, 2008.

[3] K. Abdel-Malek and J. Arora, Human Motion Simulation: Predictive Dynamics. Elsevier Science, 2013.

[4] A. Menache, Understanding motion capture for computer animation, 2nd ed. Elsevier, 2011.

5] A. Cappozzo, A. Cappello, U. Croce, and F. Pensalfini, “Surface-marker cluster design criteria for 3-d bone movement reconstruction,” Biomedical Engineering, IEEE Transactions on, vol. 44, no. 12, pp. 1165–1174, Dec 1997. [Online]. Available: http://dx.doi.org/110.1109/10.649988

[6] J. P. Holden, J. A. Orsini, K. L. Siegel, T. M. Kepple, L. H. Gerber, and S. J. Stanhope, “Surface movement errors in shank kinematics and knee kinetics during gait,” Gait & Posture, vol. 5, no. 3, pp. 217 – 227, 1997.

[7] C. Reinschmidt, A. van den Bogert, B. Nigg, A. Lundberg, and N. Murphy, “Effect of skin movement on the analysis of skeletal knee joint motion during running,” Journal of Biomechanics, vol. 30, pp. 729–732, 1997.

[8] C. D. Mutto, P. Zanuttigh, and G. M. Cortelazzo, Time-of-Flight Cameras and Microsoft Kinect(TM). Springer Publishing Company, Incorporated, 2012.

[9] G. Du, P. Zhang, J. Mai, and Z. Li, “Markerless kinect-based hand tracking for robot teleoperation,” International Journal of Advanced Robotic Systems, vol. 9, no. 10, 2012.

[10] L. A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab, “Human skeleton tracking from depth data using geodesic distances and optical flow,” Image and Vision Computing, vol. 30, no. 3, pp. 217 – 226, 2012.

[11] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, “Kinect-fusion: Real-time 3d reconstruction and interaction using a moving depth camera,” in Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, ser. UIST ’11. New York, NY, USA: ACM, 2011, pp. 559–568.

[12] K. Munirathinam, S. Sakkay, and C. Chevallereau, “Dynamic motion imitation of two articulated systems using nonlinear time scaling of joint trajectories,” in International Conference on Intelligent Robots and Systems (IROS), Algarve, Portugal, May-June 2012.

[13] M. Vukobratović, “Zero-moment point. thirty five years of its life,” International
Journal of Humanoid Robotics, vol. 01, no. 01, pp. 157–173, 2004.

[14] S. Kajita and B. Espiau, “Legged robots,” in Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Springer Berlin Heidelberg, 2008, pp. 361–389.

[15] J. M. Hollerbach, “Dynamic scaling of manipulator trajectories,” in American Control Conference, 1983, 1983, pp. 752–756.

[16] B. Kiss and E. Szadeczky-Kardoss, “Time-scaling in the control of mechatronic systems,” in New Developments in Robotics Automation and Control, ser. 978-953-7619-20-6, A. Lazinica, Ed. InTech, 2008, ch. 22.

[17] C. Chevallereau, “Time-scaling control for an underactuated biped robot,” IEEE Transactions on Robotics and Automation, vol. 19, no. 2, pp. 362 –368, 2003.

[18] S. Alfayad, “Robot humanoïde hydroïd: Actionnement, structure cinématique et stratègie de contrôle,” Ph.D. dissertation, Université de Versailles Saint Quentin en Yvelines, 2009.

[19] C. Rengifo, Y. Aoustin, F. Plestan, and C. Chevallereau, “Contac forces computation in a 3D bipedal robot using constrained-based and penalty-based approaches,” in International Conference on Multibody Dynamics, Brusselles,
Belgium, 2011.

[20] C. Kanzow and H. Kleinmichel, “A new class of semismooth newton-type methods for nonlinear complementarity problems,” Computational Optimization and Applications, vol. 11, no. 3, pp. 227 – 251, December 1998.

[21] M. C. Ferris, C. Kanzow, and T. S. Munson, “Feasible descent algorithms for mixed complementarity problems,” Mathematical Programming, vol. 86, no. 3, pp. 475–497, 1999.

[22] W. Khalil and E. Dombre, Modeling, Identification and Control of Robots, 2nd ed., ser. Kogan Page Science. Paris, France: Butterworth - Heinemann, 2004.

[23] S. N. Whittlesey, R. E. van Emmerik, and J. Hamill, “The swing phase of human walking is not a passive movement,” Motor Control, vol. 4, no. 3, pp. 273–292, 2000.

[24] T. Flash, Y. Meirovitch, and A. Barliya, “Models of human movement: Trajectory planning and inverse kinematics studies,” Robotics and Autonomous Systems, vol. 61, no. 4, pp. 330 – 339, 2013.

[25] R. A. Clark, Y.-H. Pua, K. Fortin, C. Ritchie, K. E. Webster, L. Denehy, and A. L. Bryant, “Validity of the microsoft kinect for assessment of postural control,” Gait & Posture, vol. 36, no. 3, pp. 372 – 377, 2012.

[26] D. Webster and O. Celik, “Experimental evaluation of microsoft kinect’s accuracy and capture rate for stroke rehabilitation applications,” in Haptics Symposium (HAPTICS), 2014 IEEE, Feb 2014, pp. 455–460.

[27] B. Sun, X. Liu, X. Wu, and H. Wang, “Human gait modeling and gait analysis based on kinect,” in Robotics and Automation (ICRA), 2014 IEEE International Conference on, June 2014, pp. 3173–3178.