Una aproximación desde el modelamiento a la estimación de la amenaza por lahares: el caso del sector Tamasagra en la ciudad de Pasto, Colombia

Main Article Content

Alejandra Guerrero
Ruby Alicia Criollo https://orcid.org/0000-0001-8799-0147
Gustavo A Cordoba http://orcid.org/0000-0002-1104-0249
Diana Rodríguez

Keywords

Flujos bifásicos, modelo de profundidad media, lahares, flujos de lodo, amenaza por lahares, estimación de la amenaza

Resumen

El programa Titan2F para el modelamiento de flujos bifásicos, fué usado para modelar escenarios hipotéticos de flujos de lodo de orígen volcánico (lahares) a fin de estimar la evolución espacial y temporal de este fenómeno potencialmente destructivo en su entrada a la ciudad de Pasto, Colombia, por la cuenca del rio Mijitayo. Las predicciones del programa sugieren presiones dinámicas extremadamente altas a la antrada del abanico de dispersion de la cuenca. Adicionalmente, se predicen niveles de inundación del orden de metros, aproximadamente en la mitad del área de los barrios Tamasagra y El Bosque. El programa es capaz de modelar el efecto de las calles y edificaciones en el comportamiento del flujo, mostrando como las calles lo canalizan, controlando su camino. Se encuentran zonas donde el flujo pierde su energía, donde se sugieren medidas de mitigación.

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 1208 | PDF (English) Downloads 812

Referencias

[1] Servicio Geoógico Colombiano, “Actualización del mapa de amenaza volcánica del Galeras-Colombia,” Servicio Geoógico Colombiano, Dirección de Geoamenazas, Pasto-Colombia, Public report 1, 2015.

[2] A. D. H. Artunduaga and G. P. C. Jiménez, “Third version of the hazard map of galeras volcano, colombia,” Journal of Volcanology and Geothermal Research, vol. 77, no. 1, pp. 89 – 100, 1997, galeras Volcano, Colombia: Interdisciplinary Study of a Decade Volcano. [Online]. Available: https://doi.org/10.1016/S0377-0273(96)00088-1

[3] R. Iverson, “The physics of debris flows,” Reviews of Geophysics, vol. 35, pp. 254–296, 1997. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/97RG00426

[4] D. Rickenmann, “Empirical relationships for debris flows,” Natural Hazards, vol. 19, pp. 47–77, 1999.

[5] J. O’Brien, P. Julien, and F. W.T., “Two-dimensional water flood and mudflow simulation,” Journal of Hydraulic Engineering, vol. 119, pp. 244–261, 1993.

[6] B. Haddad, M. Pastor, D. Palacios, and E. Muñoz-Salinas, “A sph depth integrated model for popocatépetl 2001 lahar (mexico): Sensitivity analysis and runout simulation,” Engineering Geology, vol. 114, no. 3, pp. 312 – 329, 2010. [Online]. Available: https://doi.org/10.1016/j.enggeo.2010.05.009

[7] L. Caballero and L. Capra, “The use of FLO2D numerical code in lahar hazard evaluation at Popocatépetl volcano: a 2001-lahar scenario,” Nat. Hazards earth Syst. Sci., vol. 2, pp. 4581–4608, 2014. [Online]. Available:
https://doi.org/10.5194/nhess-14-3345-2014

[8] G. Córdoba, G. Villarosa, M. F. Sheridan, J. G. Viramonte, D. Beigt, and G. Salmuni, “Secondary lahar hazard assessment for villa la angostura, argentina, using two-phase-titan modelling code during 2011 cordón caulle eruption,” Natural Hazards and Earth System Sciences, vol. 15, no. 4, pp. 757–766, 2015. [Online]. Available:
https://doi.org/10.5194/nhess-15-757-2015

[9] Alcaldía de Pasto, “Estadísticas-municipio de pasto,” 2014, población Pasto por Comunas. 55, 58

[10] G. Smith and W. Fritz, “Volcanic influences on terrestrial sedimentation,” Geology, vol. 97, no. 4, 1989. [Online]. Available: https://doi.org/10.1130/0091-7613(1989)017<0375:VIOTS>2.3.CO;2

[11] E. Doyle, S. Cronin, and J.-C. Thouret, “Defining conditions for bulking and debulking in lahars,” Geological Sosiety of America Bulletin, vol. 123, no. 7-8, pp. 1234–1246, 2011. [Online]. Available: https://doi.org/10.1130/B30227.1

[12] J. Beverage and J. Culbertson, “Hyperconcentrations of suspended sediment,” ASCE Journal of Hydraulics, vol. 90, pp. 117–126, 1964.

[13] T. Pierson and K. Scott, “Downstream dilution of a lahar: transition from debris flow to hyperconcentrated streamflow,” Water Resources Research, vol. 21, pp. 1511–1524, 1985. [Online]. Available: https://doi.org/10.1029/WR021i010p01511

[14] R. Iverson, M. Logan, R. Lahusen, and M. Berti, “The perfect debris flow? aggregated results from 28 large-scale experiments,” Journal of Geophysical Research, vol. 115, 07 2010. [Online]. Available:
https://doi.org/10.1029/2009JF001514

[15] J. Vallance and R. Iverson, The Encyclopedia of Volcanoes. Elsevier, 2015, ch. Lahars and their deposits.

[16] V. Chow, Open channel hydraulics. New York: McGraw Hill, 1959.

[17] S. Savage and K. Hutter, “The motion of a finite mass of granular material down a rough incline,” J. of Fluid Mechanics, vol. 199, pp. 177–215, 1989. [Online]. Available: https://doi.org/10.1017/S0022112089000340

[18] A. Patra, A. Bauer, C. Nichita, E. Pitman, M. Sheridan, M. Bursik, B. Rupp, A. Webber, A. Stinton, L. Namikawa, and C. Renschler, “Parallel adaptive numerical simulation of dry avalanches over natural terrain,” Journal of Volcanology and Geothermal Research, vol. 139, no. 1, pp. 1 – 21, 2005, modeling and Simulation of Geophysical Mass Flows. [Online]. Available: https://doi.org/10.1016/j.jvolgeores.2004.06.014

[19] Y. Forterre and O. Poulinquen, “Flows of dense granular media,” Annual Review of Fluid Mechanics, vol. 40, pp. 1–24, 2008.

[20] R. Iverson, “Debris flows: behaviour and hazard assessment,” Geology Today, vol. 30, pp. 15–21, 2014. [Online]. Available: https://doi.org/10.1111/gto.12037

[21] G. Córdoba, M. F. Sheridan, and B. Pitman, “Titan2F code for lahar hazard assessment: derivation, validation and verification,” Boletin de la Sociedad Geológica Mexicana, vol. 70, pp. 611–631, 2018.

[22] T. Anderson and R. Jackson, “A fluid mechanical description of fluidized beds: Equations of motion,” Ind. Eng. Chem. Fundam., vol. 6, pp. 527–539, 1967.

[23] F. Dobran, Theory of Structured Multiphase Mixtures, ser. Lecture Notes in Physics. Springer-Verlag, 1991, no. 372.

[24] L. Mazzei and P. Lettieri, “A drag force closure for uniformly dispersed fluidized suspensions,” Chemical Engineering Science, vol. 62, pp. 6129–6142, 2007. [Online]. Available: https://doi.org/10.1016/j.ces.2007.06.028

[25] A. Khan and J. Richardson, “Fluid-particle interactions and flow characteristics of fluidized and settling beds ans settling suspensions of spherical particles,” Chemical Engineering Communications, vol. 78, no. 1, pp. 111–
130, 1989. [Online]. Available: https://doi.org/10.1080/00986448908940189

[26] L. Fan and C. Zhu, Principles os Gas-Solid Flows. Cambridge CB2 2RU: Cambridge, 1998.

[27] G. Valentine, “Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects,” Journal of Volcanology and Geothermal Research, vol. 87, pp. 117–140, 1998. [Online]. Available:
https://doi.org/10.1016/S0377-0273(98)00094-8

[28] G. Valentine, D. Doronzo, P. Dellino, , and M. Tullio, “Effects of volcano profile on dilute pyroclastic density currents: numerical simulations,” Geology, vol. 39, pp. 947–950, 2011.

[29] N. Jones, “Damage of plates due to impact, dynamic pressure and explosive loads,” Lat. Am. J. Solids Stru., vol. 10, pp. 767–780, 2012.

[30] D. Moriano, P. Paredes, G. Cordoba, and H. Delgado, “Evaluación de la vulnerabilidad de edificaciones ante la génesis de lahares: Caso de estudio en la población de santiago xalitzintla, en el flanco ne del volcán popocatépetl (méxico),” Boletín de la Sociedad Geológica Mexicana, vol. 69, pp. 223–241, 2017. [Online]. Available: http://dx.doi.org/10.18268/BSGM2017v69n2a11

[31] G. Córdoba, M. Sheridan, and B. Pitman, “A two-phase, depth-averaged model for geophysical mass flows in the TITAN code framework,” in 28th Conference on Mathematical Geophysics. Pissa, Italy: CMG-IUGG, June 2010, http://cmg2010.pi.ingv.it/Abstract/index.html.

[32] M. Sheridan, G. Córdoba, E. Pitman, S. Cronin, and J. Procter, “Application of a wide-ranging two-phase debris flow model to the 2007 crater lake breakout lahar at Mt. Ruapehu, New Zealand,” in Fall Meeting, vol. Abstract V53E-2691. American Geophysical Union, 2011.

[33] G. Córdoba, J. Viramonte, A. Folch, H. Delgado, M. Sheridan, and G. Villarosa, “Evaluating the lahar hazard at Villa la Angostura, Argentina, elated to ash-fall from Puyehue volcano 2011 eruption interlayered with snow deposits using the new Two-Phase-Titan,” in American Geophysical Union, vol. Abstract V43A-05, Cancún, México, June 2013.

[34] D. Rodriguez, G. Cordoba, and H. Delgado, “Evaluación probabilística del peligro por lahares en el flanco ne del volcán popocatépetl,” Boletín de la Sociedad Geológica Mexicana, vol. 69, pp. 243–260, 2017. [Online]. Available: http://dx.doi.org/10.18268/BSGM2017v69n1a12

[35] J. S. Systems, PALSAR User’s Guide, 2nd Edition. J-spacesystems, November 2012, 69 pp. 58

[36] M. Brown, “Vulnerability assessment for the Mijitayo creek water treatment facility; pasto, colmbia,” Master Thesis, State University of New York at Buffalo, Buffalo, USA, 2010, department of Geological Sciences.

[37] C. Narváez and N. Rosero, “Modelamiento del control topográfico ejercido por el Valle de Atriz sobre los flujos de lodo provenientes de la quebrada Mijitayo,” Universidad de Nariño, Pasto, Colombia, Trabajo de Grado, 2005, Facultad de Ingeniería.

[38] E. R. Stefanescu, M. Bursik, G. Cordoba, K. Dalbey, M. D. Jones, A. K. Patra, D. C. Pieri, E. B. Pitman, and M. F. Sheridan, “Digital elevation model uncertainty and hazard analysis using a geophysical flow model,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 468, no. 2142, pp. 1543–1563, 2012. [Online]. Available: https://doi.org/10.1098/rspa.2011.0711

[39] M. Neteler and H. Mitasova, Open source GIS, a GRASS GIS approach. NY: Springer, 2008, 406 pp. 60

[40] M. Calvache, G. Cortés, and S. Williams, “Stratigraphy and chronology of the galeras volcanic complex, colombia,” Journal of Volcanology and Geothermal Research, vol. 77, no. 1, pp. 5 – 19, 1997, galeras Volcano,
Colombia: Interdisciplinary Study of a Decade Volcano. [Online]. Available: https://doi.org/10.1016/S0377-0273(96)00083-2

[41] Ingeominas, “Mapa de unidades geológicas sperficiales de la ciudad de San Juán de Pasto y sus alrededores,” 2002, ca. 1:10.000.

[42] M. Calvache, “Geology and volcanology of the recent evolution of Galeras volcano, Colombia,” Master of Science, Louisiana State University, Louisiana, USA, 1990. 63

[43] Servicio Geológico Colombiano, “Mapa Geomorfológico aplicado a Movimientos en Masa: Plancha 429 Pasto,” 2015, ca. 1:100.000.

[44] Servicio Geológico Colombiano, “Memoria explicativa mapa geomorfológico aplicado a movimientos en
masa,” Bogotá, Colombia, Abril 2015, convenio de Cooperación Especial 039 de 2013. 63

[45] IDEAM, “Curvas Intensidad Duración Frecuencia-IDF: Estación Obonuco-Pasto,” Instituto de Hidrología, Meteorología y Estudios Ambientales, Colombia, 2016, código 5204501.

[46] K. Dalbey, A. Patra, E. Pitman, M. Bursik, and M. Sheridan, “Input uncertainty propagation methods and hazard mapping of geophysical mass flows,” Journal og geophysical research, vol. 113, 2008. [Online]. Available:
https://doi.org/10.1029/2006JB004471

[47] M. Sheridan, A. Patra, K. Dalbey, and B. Hubbard, “Probabilistic digital hazard maps for avalanches and massive pyroclastic flows using TITAN2D,” The Geological Society of America, vol. Special Paper 464, p. 11 pp, 2010.

[48] L. Berga and J. Dolz, “Avenidas en ríos; evaluación y sistemas de previsión y alarma,” in Riesgos naturales en ingeniería civil. Barcelona: UPC Edicions, 1986, pp. 179–187, in Spanish.

[49] D. Rickenmann and M. Zimmermann, “The 1987 debris flows in switzerland: documentation and analysis,” Geomorphology, vol. 8, no. 2, pp. 175 – 189, 1993. [Online]. Available: https://doi.org/10.1016/0169-555X(93)90036-2

[50] T. C. Pierson, “Erosion and deposition by debris flows at mt thomas, north canterbury, new zealand,” Earth Surface Processes, vol. 5, no. 3, pp. 227–247, 1980. [Online]. Available: https://doi.org/10.1002/esp.3760050302

[51] C. F. Colebrook, C. M. White, and G. I. Taylor, “Experiments with fluid friction in roughened pipes,” Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, vol. 161, no. 906, pp.
367–381, 1937. [Online]. Available: https://doi.org/10.1098/rspa.1937.0150

[52] C. Colebrook, “Turbulent flow in pipes, with particular reference to the transition region between the smoothand rough pipe laws,” Journal of the Institution of Civil Engineers, vol. 11, pp. 133–156, 1939. [Online]. Available: https://doi.org/10.1680/ijoti.1939.13150

[53] N. Cheng, “Simple modification of Manning-Strickler formula for large-scale roughness,” Journal of Hydraulics Engineering, vol. 143, no. 9, p. 04017031, 2017. [Online]. Available: https://doi.org/10.1061/(ASCE)HY.1943-7900.0001345

[54] H. Huppert and J. Simpson, “The slumping of gravity currents,” J. Fluid Mech, vol. 99, pp. 785–799, 1980. 66

[55] W. Dade and H. Huppert, “A box model for non-entraining, suspension-driven gravity surges on horizontal surfaces,” Sedimentology, vol. 42, no. 3, pp. 453–470, 1995. [Online]. Available: https://doi.org/10.1111/j.1365-3091.1995.tb00384.x

[56] G. Córdoba, “Dilute particle-laden currents: dynamics and deposit patterns,” PhD Thesis, University of Bristol, Bristol, UK, 2007.

[57] T. Karmann, “The engineer grapples with nonlinear problems,” Bull. Am. Math. Soc., vol. 46, pp. 615–683, 1940.

[58] T. Boxin, “Orthogonal array-based latin hypercubes,” Journal of the American Statistical Association, vol. 88, no. 424, pp. 1392–1397, 1993. [Online]. Available: https://doi.org/10.1080/01621459.1993.10476423

[59] H. Baalousha, “Using orthogonal array sampling to cope with uncertainty in ground water problems,” Groundwater, vol. 47, no. 5, pp. 709–713, 2009. [Online]. Available: https://doi.org/10.1111/j.1745-6584.2009.00576.x

[60] L. Barragué, “Metodología eficiente de optimización de diseño basada en fiabilidad aplicada a estructuras (in spanish),” Ph.D. dissertation, Universidad de La Rioja, La Rioja, España, 2010.

[61] S. Glasstone and P. Dolan, “The effects of nuclear weapons,” Department of Defense and Department of Energy, Washington DC, USA, Tech. Rep., 1977, 653 pp.