Planeación y dimensionamiento de redes eléctricas de distribución soterrada mediante un método metaheurístico
Main Article Content
Keywords
Optimización, planeación, redes de distribución, geolocalización, dimensionamiento, metaheurística
Resumen
La introducción de nuevas cargas a los sistemas eléctricos de distribución tradicionales puede provocar sobrecarga en los equipos de potencia. Esta sobrecarga hace que la vida útil de los equipos de potencia disminuya considerablemente además, la confiabilidad y estabilidad del sistema comienza a verse comprometido. Por lo tanto, mediante la presente investigación se da solución al problema de planeación de redes eléctricas de distribución integrando la posibilidad de migrar del concepto de redes eléctricas tradicionales a redes eléctricas inteligentes, las mismas que, únicamente se consigue dotando a los sistemas eléctricos de distribución de robustas redes heterogéneas de comunicación bidireccional. El presente trabajo se enfoca en el desarrollo de un modelo capaz de ubicar los transformadores de distribución en los mejores sitios para satisfacer de energía a los usuarios de la red eléctrica y de conseguir la mejor topología mediante la aplicación de teoría de grafos. Además, el presente modelo contempla el desarrollo de una heurística capaz de ejecutar procesos de planeación georreferenciada mediante la gestión y utilización de la información geolocalizada desde OpenStreetMap mediante el archivo .osm que, esta plataforma gratuita, nos ofrece.La heurística propuesta en el presente documento se modela utilizando el software Matlab y para validar la información, se requiere el software Cymdist.
Descargas
Referencias
[2] E. Miguez, J. Cidras, E. Diaz-Dorado, and J. L. Garcia-Dornelas, “An Improved Branch Exchange Algorithm for Large Scale Distribution Network Planning,” IEEE Power Engineering Review, vol. 22, no. 9, pp. 58–58, 2002. [Online]. Available: https://doi.org/10.1109/MPER.2002.4312583
[3] G. A. Jiménez-Estévez, L. S. Vargas, and R. Palma-Behnke, “An evolutionary approach for the greenfield planning problem in distribution networks,” IEEE International Conference on Neural Networks - Conference Proceedings, pp. 1744–1749, 2007. [Online]. Available: https://doi.org/10.1109/IJCNN.2007.4371221
[4] J. Fletcher, T. Fernando, H. Iu, M. Reynolds, and S. Fani, “A case study on optimizing an electrical distribution network using a genetic algorithm,” 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), pp. 20–25, 2015. [Online]. Available: https://doi.org/10.1109/ISIE.2015.7281437
[5] P. Zeng, Qinyong Zhou, Z. Wu, X.-p. Zhang, and Hao Fu, “A fast and automatic candidate lines selection approach for transmission expansion planning,” in IET International Conference on Resilience of Transmission and Distribution Networks (RTDN) 2015, 2015, pp. 1–6. [Online]. Available: https://doi.org/10.1049/cp.2015.0882
[6] H. E. Farag and S. M. Kandil, “Optimum Planning of Renewable Energy Resources in Conjunction with Battery Energy Storage Systems,” in 2015 4th International Conference on Electric Power and Energy Conversion Systems (EPECS), 2015, pp. 1–6. [Online]. Available: https://doi.org/10.1109/EPECS.2015.7368491
[7] J. Inga, E. Inga, C. Gómez, and R. Hincapié, “Evaluación de la Infraestructura de Medición y la Respuesta de la Demanda,” Revista Técnica Energía, no. 12, pp. 262–269, 2016.
[8] M. Hemphill and N. South, “Electricity Distribution System Planning for an Increasing Penetration of Plug-In Electric Vehicles in New South Wales,” University of New South Wales, pp. 1–6, 2011.
[9] G. A. Jiménez-Estévez, L. Vargas, and R. Palma-Behnke, “Genetic Algorithms and Voronoi Polygons applied to decision making in the Distribution Systems expansion problem,” 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, T and D-LA, pp. 1–7, 2008. [Online]. Available: https://doi.org/10.1109/TDC-LA.2008.4641797
[10] W. Yuan, S. Member, J. Wang, S. Member, F. Qiu, C. Kang, S. Member, and B. Zeng, “Robust Optimization Based Resilient Distribution Network Planning Against Natural Disasters,” Ieeee Transactions on Smart Grid, vol. 7, no. 6, pp. 2817–2826, 2016. [Online]. Available: https://doi.org/10.1109/TSG.2015.2513048
[11] G. A. Jiménez-Estévez, L. S. Vargas, and V. Marianov, “Determination of feeder areas for the design of large distribution networks,” IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1912–1922, 2010. [Online]. Available: https://doi.org/10.1109/TPWRD.2010.2042468
[12] D. P. Montoya and J. M. Ramirez, “A minimal spanning tree algorithm for distribution networks configuration,” IEEE Power and Energy Society General Meeting, pp. 1–7, 2012. [Online]. Available: https://doi.org/10.1109/PESGM.2012.6344718
[13] J. Li, X. Y. Ma, C. C. Liu, and K. P. Schneider, “Distribution system restoration with microgrids using spanning tree search,” IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 3021–3029, 2014. [Online]. Available: https://doi.org/10.1109/TPWRS.2014.2312424
[14] A. Nagarajan and R. Ayyanar, “Application of Minimum Spanning Tree Algorithm for Network Reduction of Distribution Systems,” in IEEE, 2014.
[15] B. C. Neagu and G. Georgescu, “Wind Farm Cable Route Optimization Using a Simple Approach,” Electrical and Power Engineering (EPE), 2014 International Conference and Exposition on, Iasi, no. Epe, pp. 1004–1009, 2014
[16] P. Balakrishna, K. Rajagopal, and K. S. Swarup, “AMI / GIS based Distribution System Load Flow for Extended Situational Awareness .” in IEEE, 2014, pp. 1–6.
[17] M. Esmaeeli, A. Kazemi, H.-a. Shayanfar, and M.-r. Haghifam, “Sizing and placement of distribution substations considering optimal loading of transformers,” International Transactions on Electrical Energy Systems Int., 2014. [Online]. Available: https://doi.org/10.1002/etep
[18] M. Campaña, E. Inga, and R. Hincapié, “Optimal placement of universal data aggregation points for smart electric metering based on hybrid wireless,” in CEUR Workshop Proceedings, vol. 1950, 2017, pp. 6–9.
[19] E. Inga, S. Céspedes, R. Hincapié, and C. Andy, “Scalable Route Map for Advanced Metering Infrastructure Based on Optimal Routing of Wireless Heterogeneous Networks,” IEEE Wireless Communications, vol. 24, no. April, pp. 1–227, 2017.
[20] D. Carrión, E. Inga, J. W. Gonzalez, and R. Hincapié, “Optimal Geographical Placement of Phasor Measurement Units based on Clustering Techniques,” 51st International Universities’ Power Engineering Conference, p. 6, 2016. [Online]. Available: https://doi.org/10.1109/UPEC.2016.8114003
[21] C. Mateo, G. Prettico, T. Gómez, R. Cossent, F. Gangale, P. Frías, and G. Fulli, “European representative electricity distribution networks,” International Journal of Electrical Power and Energy Systems, vol. 99, no. January, pp. 273–280, 2018. [Online]. Available: https://doi.org/10.1016/j.ijepes.2018.01.027
[22] E. M. Rodríguez-Herrera, M. A. Angamarca-Guamán, E. M. Inga-Ortega, E. M. Rodríguez-Herrera, M. A. Angamarcauamán, and E. M. Inga-Ortega, “Optimización de cobertura para lugares georreferenciados,” ITECKNE Innovación e Investigación en Ingeniería, vol. 14, no. 2, p. 140, 2017. [Online]. Available: https://doi.org/10.15332/iteckne.v14i2.1768
[23] A. Peralta-Sevilla, E. Inga, R. Cumbal, and R. Hincapié, “Optimum deployment of FiWi Networks using wireless sensors based on Universal Data Aggregation Points,” 2015 IEEE Colombian Conference on Communications and Computing, COLCOM 2015 - Conference Proceedings, 2015. [Online]. Available: https://doi.org/10.1109/ColComCon.2015.7152079
[24] D. Pérez, E. Inga, and R. Hincapié, “Optimal Sizing of a Network for Smart Metering,” IEEE Latin America Transactions, vol. 14, no. 5, pp. 2114–2119, 2016.
[25] V. Gouin, M. C. Alvarez-Hérault, and B. Raison, “Innovative planning method for the construction of electrical distribution network master plans,” Sustainable Energy, Grids and Networks, vol. 10, pp. 84–91, 2017. [Online]. Available: https://doi.org/10.1016/j.segan.2017.03.004