Características de la estructura porosa y potencial de almacenamiento de gas de la Formación La Luna del Cretáceo, Cuenca del Valle Medio del Magdalena, Colombia

Main Article Content

Efraín Casadiego-Quintero https://orcid.org/0000-0002-2546-8975
Carlos Alberto Rios-Reyes https://orcid.org/0000-0002-3508-0771

Keywords

Reservorio de gas, mineralogía, petrografía, microestructural, Formación La Luna

Resumen

Las rocas de interés en el presente estudio (lodolitas) muestran inherentemente una distribución heterogénea de tamaño de poro en la matriz. Pueden presentar poros orgánicos e inorgánicos y el mecanismo de transporte a través de los poros es diferente y, por lo tanto, es necesario describir su porosidad orgánica e inorgánica. Este trabajo recurre al uso de diferentes técnicas de microscopía para caracterizar las lodolitas del miembro de Galembo de la Formación La Luna del Cretáceo, Cuenca del Valle Medio del Magdalena, Colombia. Estas rocas presentan varios tipos de poros, incluidos los poros entre partículas debido a la floculación de los minerales arcillosos, la organoporosidad debido a la maduración térmica y el enterramiento, los poros intraparticulares de los organismos, los poros dentro de los granos minerales y los microcanales y microfracturas. La existencia de poros interconectados en este complejo sistema de poro-fractura proporciona vías efectivas para la migración de gas primario y también proporciona un espacio de almacenamiento para el hidrocarburo residual en las lodolitas, lo cual es importante para la migración primaria y el almacenamiento en rocas reservorio de gas. La conectividad de los poros es alta y aumenta hacia la parte superior de la secuencia sedimentaria. 

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 706 | PDF (English) Downloads 409

Referencias

[1] B. E. Law and J. B. Curtis, “Introduction to unconventional petroleum systems,” AAPG Bulletin, vol. 86, no. 11, pp. 1851–1852, 2007. https://doi.org/10.1306/61EEDDA0-173E-11D7-8645000102C1865D


[2] M. Josh, L. Esteban, C. D. Piane, J. Sarout, D. N. Dewhurst, and M. B. Clennell, “Laboratory characterization of shale properties,” Journal of Petroleum Science and Engineering, vol. 88-89, pp. 107–124, 2012. https://doi.org/10.1016/j.petrol.2012.01.023


[3] R. G. Loucks, R. M. Reed, S. C. Ruppel, and U. Hammes, Spectrum of pore types in siliceous mudstone in shale gas systems (Abstract). AAPG/SEG/SPE/SPWLA, 2010.


[4] Q. R. Passey, K. Bohacs, W. L. Esch, R. Klimentidis, S. Sinha, and Others, “From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale gas reservoirs,” in International oil and gas conference and exhibition in China. Society of Petroleum Engineers, 2010.


[5] C. H. Sondergeld, R. J. Ambrose, C. S. Rai, and J. Moncrieff, “Microstructural studies of gas shale: Society of Petroleum Engineers,” in SPE 131768 Unconventional Gas Conference, Pittsburgh (USA), 2010.


[6] D. Barrero, A. Pardo, C. A. Vargas, and J. F. Martínez, “Colombian sedimentary basins: Nomenclature, boundaries and petroleum geology, a new proposal,” Agencia Nacional de Hidrocarburos, vol. 1, p. 92, 2007.


[7] L. G. Morales, D. J. Podesta, W. C. Hatfield, H. Tanner, S. H. Jones, M. H. Barker, D. J. O’Donoghue, C. E. Mohler, E. P. Dubois, C. Jacobs, and C. R. Goss, “General Geology and oil occurrences of the Middle Magdalena Valley, Colombia: South America,” in Habitat of Oil Symposium, L. G. Weeks, Ed. AAPG, 1958, pp. 641–695.


[8] S. Schamel, “Middle and Upper Magdalena Basins, Colombiain,” in Active Margin Basins, K. T. Biddle, Ed. AAPG, 1991, pp. 283–301.


[9] J. C. Rodriguez, “Challenges and opportunities for the development of Shale resources in Colombia,” Master’s thesis, The University of Texas, Austin (USA), 2013.


[10] J. Zumberge, “Source Rocks of the La Luna Formation (Upper Cretaceous) in the Middle Magdalena Valley, Colombia,” in Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks, J. Palacas, Ed. AAPG Special Volumes, 1984, pp. 127–133.


[11] J. C. Ramon and L. I. Dzou, “Petroleum geochemistry of the Middle Magdalena Valley: Colombia,” Organic Geochemistry, vol. 30, no. 4, pp. 249–266, 1999. https://doi.org/10.1016/j.marpetgeo.2003.11.019


[12] A. Rangel, P. Parra, and C. Niño, “The La Luna Formation: chemostratigraphy and organic facies in the Middle Magdalena Basin,” Organic Geochemistry, vol. 31, no. 12, pp. 1267–1284, 2000. https://doi.org/10.1016/S01466380(00)00127-3


[13] R. C. Aguilera, V. A. Sotelo, C. A. Burgos, C. Arce, C. Gómez, J. Mojica, H. Castillo, D. Jiménez, and J. Osorno, “Organic Geochemistry Atlas of Colombia: An Exploration Tool for Mature and Frontier Basins,” Earth Sciences Research Journal, vol. 13, pp. 1–174, 2009.


[14] E. J. Torres, “Unconventional gas shale assessment of La Luna Formation in the central and south areas of the Middle Magdalena Valley Basin, Colombia,” Master’s thesis, University of Oklahoma, Norman (USA), 2013.


[15] A. Young, P. H. Monaghan, and R. T. Schweisberger, “Calculation of ages of hydrocarbons in oils - Physical chemistry applied to petroleum geochemistry I,” AAPG Bulletin, vol. 61, no. 4, pp. 573–600, 1977.


[16] S. Talukdar, O. Gallango, and A. Ruggiero, “Formaciones La Luna y Querecual: rocas madres de petróleo,” in Memorias VI Congreso Geológico Venezolano, A. Espejo, J. H. Ríos, N. P. D. Bellizzia, and A. S. D. Pardo, Eds. Caracas, Venezuela: Sociedad Venezolana de Geológos, 1985, pp. 3606–3642.


[17] Google, “Google Earth,” 2018. http://earth.google.com


[18] D. A. Piamonte and L. A. Mayorga, “Caracterización de Yacimientos Tipo Shale Gas y Oil Shale en La Formación La Luna en el Flanco Oriental de la Cuenca del Valle Medio del Magdalena (VMM), Santander, Colombia,” Master’s thesis, Universidad Industrial de Santander, Bucaramanga (Colombia), 2015.


[19] R. L. Folk, Petrology of Sedimentary Rocks. Austin: Hemphill Publishing Company, 1974.


[20] R. J. Dunham, “Classification of Carbonate Rocks According to Depositional Texture,” in Classification of Carbonate Rocks, W. E. Hamm, Ed. AAPG Memoir, 1962, pp. 108–121.


[21] R. V. Ingersoll, T. F. Bullard, R. L. Ford, J. P. Grimm, J. D. Pickle, and S. W. Sares, “The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method,” Journal of Sedimentary Petrology, vol. 54, no. 1, pp. 103–116, 1984. https://doi.org/10.1306/212F8783-2B24-11D7-8648000102C1865D


[22] R. Kretz, “Symbols for rock-forming minerals,” American Mineralogist, vol. 68, pp. 277–279, 1983. https://doi.org/10.1007/978-3-540-74169-5


[23] E. Casadiego, “Caracterización de reservorios de gas shale integrando datos multiescala: Caso estudio Miembro Galembo, Sección Aguablanca, Cuenca del Valle Medio del Magdalena,” Master’s thesis, Universidad Industrial de Santander, Colombia, 2014.


[24] R. H. Bennett, N. R. O’Brien, and M. H. Hulbert, “Determinants of clay and shale microfabric signatures: processes and mechanisms,” in Microstructure of Fine Grained Sediments: From Mud to Shale, R. H. Bennett, W. R. Bryant, M. H. Hulbert, W. A. Chiou, R. W. Faas, J. Kasprowicz, H. Li, T. Lomenick, N. R. O‘Brien, S. Pamukcu, P. Smart, C. E. Weaver, and T. Yamamoto, Eds. New York: Springer-Verlag, 1991, pp. 5–32.


[25] N. R. O’Brien and R. M. Slatt, “The fabrics of shales and mudstone, an overview,” in Proceedings of the Clay Minerals Society 27th Annual Meeting- 39th Annual Clay Minerals Conference, Missouri (USA), 1990.


[26] S. Creaney and Q. R. Passey, “Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework,” AAPG Bulletin, vol. 77, no. 3, pp. 386–401, 1993. https://doi.org/10.1306/bdff8c18-1718-11d78645000102c1865d


[27] M. Skalinski and J. Kenter, “Pore Typing Workflow for Complex Carbonate Systems,” in AAPG Annual Convention and Exhibition, Pittsburgh (USA), may 2013.


[28] J. Schneider, P. B. Flemings, R. J. Day-Stirrat, and J. T. Germaine, “Insights into porescale controls on mudstone permeability through resedimentation experiments,” Geology, vol. 39, pp. 1011–1014, 2011. https://doi.org/10.1130/G32475.1


[29] R. M. Slatt and N. R. O’Brien, “Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine grained rocks,” AAPG Bulletin, vol. 95, no. 12, pp. 2017–2030, 2011. https://doi.org/10.1306/03301110145


[30] S. Bernard, B. Horsfield, H. M. Schulz, R. Wirth, A. Schreiber, and N. Sherwood, “Geochemical evolution of organic-rich shales with increasing maturity: a STXM and TEM study of the Posidonia Shale (Lower Toarciannorthern Germany),” Marine and Petroleum Geology, vol. 31, pp. 70–89, 2012. https://doi.org/10.1016/j.marpetgeo.2011.05.010


[31] G. R. Chalmers, R. M. Bustin, and I. M. Power, “Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig uni,” AAPG bulletin, vol. 96, no. 6, pp. 1099–1119, 2012. https://doi.org/10.1306/10171111052


[32] R. M. Slatt, P. Philip, Y. Abousleiman, P. Singh, R. Perez, K. Portas, J. Marfurt, N. Madrid-Arroyo, E. O´Brien, V. Eslinger, and E. Baruch, “Pore-toregional-scale, integrated characterization workflow for unconventional gas shales,” in Shale reservoirs-Giant resources for the 21st century, J. Breyer, Ed. AAPG Memoir, 2012, pp. 127–150.


[33] L. M. Keller, L. Holzer, R. Wepf, and P. Gasser, “3d geometry and topology of pore pathways in Opalinus clay: implications for mass transport,” Applied Clay Science, vol. 52, pp. 85–95, 2011. https://doi.org/10.1016/j.clay.2011.02.003


[34] M. E. Curtis, R. J. Ambrose, C. H. Sondergeld, and C. S. Rai, “Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging,” AAPG Bulletin, vol. 96, no. 4, pp. 665–677, 2012. https://doi.org/10.1016/j.jngse.2019.102907


[35] R. G. Loucks, R. M. Reed, S. C. Ruppel, and D. M. Jarvie, “Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale,” Journal of Sedimentary Research, vol. 79, pp. 848–861, 2009. https://doi.org/10.2110/jsr.2009.092


[36] J. Klaver, G. Desbois, J. L. Urai, and R. Littke, “Bib-sem study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany,” International Journal of Coal Geology, vol. 103, no. 1, pp. 12–25, 2012. https://doi.org/10.1016/j.coal.2012.06.012


[37] R. G. Loucks, R. M. Reed, S. C. Ruppel, and U. Hammes, “Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores,” AAPG Bulletin, vol. 96, no. 6, pp. 1071–1098, 2012. https://doi.org/10.1306/08171111061


[38] D. Jarvie, R. J., T. E. R. Hill, and R. M. Pollastro, “Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment,” AAPG Bulletin, vol. 91, no. 4, pp. 475–499, 2007. https://doi.org/10.1306/12190606068


[39] H. Eltom, O. Abdullatif, M. Makkawi, and A. Abdullraziq, “Microporosity in the Upper Jurassic Arab-D carbonate reservoir, central Saudi Arabia: an outcrop analogue study,” Journal of Petroleum Geology, vol. 36, no. 3, pp. 281–297, 2013. https://doi.org/10.1111/jpg.12556


[40] J. F. W. Gale and J. Holder, “Natural fractures in some US. shales and their importance for gas production,” in Petroleum Geology Conference Series, vol. 7. Geological Society, 2010, pp. 1131–1140.


[41] R. M. Slatt, “Important Geological Properties of Unconventional Resource Shales,” Central European Journal of Geosciences, vol. 3, no. 4, pp. 435–448, 2011. https://doi.org/10.2478/s13533-011-0042-2


[42] S. Xian, G. Liu, Y. Chenga, L. Yang, H. Jiang, L. Chen, S. Jiang, and J. Wang, “Brittleness index prediction in shale gas reservoirs based on efficient network models,” Journal of Natural Gas Science and Engineering, vol. 35, pp. 673–685, 2016. https://doi.org/10.1016/j.jngse.2016.09.009


[43] N. Lou, T. Zhao, and Y. Zhang, “Calculation Method about Brittleness Index in Qijia Oil Field,” IOSR Journal of Engineering (IOSRJEN), vol. 6, no. 3, pp. 14–19, 2016.


[44] F. P.Wang and J. F. W. Gale, “Screening criteria for shale-gas systems,” Gulf Coast Association of Geological Societies Transactions, vol. 59, pp. 779–793, 2009.


[45] Z. Guo, X.-Y. Li, C. Liu, X. Feng, and A. Y. Shen, “Shale rock physics model for analysis of brittleness index, mineralogy, and porosity in the Barnett Shale,” Journal of Geophysics and Engineering, vol. 10, no. 2, p. 25006, 2013. https://doi.org/10.1088/1742-2132/10/2/025006


[46] R. M. Slatt and Y. Abousleiman, “Merging sequence stratigraphy and geomechanics for unconventional gas shales,” in The Leading Edge, Special Section: Shales, 2011, pp. 274–282. https://doi.org/10.1190/1.3567258


[47] T. Dong, N. B. Harris, K. Ayranci, C. E. Twemlow, and B. R. Nassichuk, “Porosity characteristics of the Devonian Horn River shale, Canada: Insights from lithofacies classification and shale composition,”

International Journal of Coal Geology, vol. 141, pp. 74–90, 2015. https://doi.org/10.1016/j.coal.2015.03.001


[48] A. Gómez, “Integrated geological characterization and distribution of the Salada member, La Luna Formation in the central area of The Middle Magdalena Basin, Colombia,” Master’s thesis, University of Oklahoma (USA), 2014.


[49] A. R. Butcher and H. J. Lemmens, “Advanced SEM Technology Clarifies Nanoscale Properties Of Gas Accumulations In Shales,” The American Oil & Gas Reporter, 2011. https://www.aogr.com/magazine/cover-story/advanced-semtechnology-clarifies-nanoscale-properties-of-gas-accumulations